977 resultados para polymorphisms, genetic
Resumo:
Target region amplification polymorphism (TRAP) markers were used to estimate the genetic similarity (GS) among 53 sugarcane varieties and five species of the Saccharum complex. Seven fixed primers designed from candidate genes involved in sucrose metabolism and three from those involved in drought response metabolism were used in combination with three arbitrary primers. The clustering of the genotypes for sucrose metabolism and drought response were similar, but the GS based on Jaccard`s coefficient changed. The GS based on polymorphism in sucrose genes estimated in a set of 46 Brazilian varieties, all of which belong to the three Brazilian breeding programs, ranged from 0.52 to 0.9, and that based on drought data ranged from 0.44 to 0.95. The results suggest that genetic variability in the evaluated genes was lower in the sucrose metabolism genes than in the drought response metabolism ones.
Resumo:
Background The strongest genetic marker for psoriasis is Cw*06. Polymorphisms in the tumor necrosis factor (TNF)-alpha promoter region, especially replacement of guanine with adenine in positions -238 and -308 are related to higher TNF-alpha production and higher risk for psoriasis in Caucasoid populations, not found in Asians. We performed a case-control study of 69 patients with psoriasis type I and 70 controls, characterized clinical progression along 10-years of follow-up in mild or severe disease and determined HLA class I, II, and TNF single nucleotide polymorphisms (SNPs) -238 and -308 polymorphisms to demonstrate whether these polymorphisms may be genetic risk for susceptibility to psoriasis or severity of the disease in Brazilians. Methods Polymorphisms were identified using PCR/SSP. Alleles, genotypes, and haplotypes frequencies were compared using Fisher`s test. Results More severe disease was found in male patients. It may be suggested that alleles B*37, Cw*06, Cw*12, and DRB1*07 were associated with severe disease course, while B*57 with mild disease. No statistical difference was found between the patients and controls regarding polymorphisms frequencies in TNF SNPs. This study pointed to a higher TNF-238 G/G genotype frequency (OR: 3.21; CI: 1.06-9.71; P = 0.04) in the group with severe disease. Conclusions Polymorphisms in the TNF-alpha SNPs do not seem to be a more important genetic risk factor for psoriasis than the already known Cw*06 in Brazilian patients, but these markers may be related to clinical manifestations.
Resumo:
Objectives Alterations in the enzymes involved in homocysteine (Hcy) metabolism or vitamin deficiency could play a role in coronary artery disease (CAD) development. This study investigated the influence of MTHFR and MTR gene polymorphisms, plasma folate and MMA on Hcy concentrations and CAD development. MMA and folate concentrations were also investigated according to the polymorphisms. Methods Two hundred and eighty-three unrelated Caucasian individuals undergoing coronary angiography (175 with CAD and 108 non-CAD) were assessed in a case-control study. Plasma Hcy and MMA were measured by liquid chromatography/tandem mass spectrometry. Plasma folate was measured by competitive immunoassay. Dietary intake was evaluated using a nutritional questionnaire. Polymorphisms MTHFR and MTR were investigated by polymerase chain reaction (PCR) followed by enzyme digestion or allele-specific PCR. Results Hcy mean concentrations were higher in CAD patients compared to controls, but below statistical significance (P = 0.246). Increased MMA mean concentrations were frequently observed in the CAD group (P = 0.048). Individuals with MMA concentrations > 0.5 mu mol/l (vitamin B(12) deficiency) were found only in the CAD group (P = 0.004). A positive correlation between MMA and Hcy mean concentrations was observed in both groups, CAD (P = 0.001) and non-CAD (P = 0.020). MMA mean concentrations were significantly higher in patients with hyperhomocysteinemia in both groups, CAD and non-CAD (P = 0.0063 and P = 0.013, respectively). Folate mean concentration was significantly lower in carriers of the wild-type MTHFR 1298AA genotype (P = 0.010). Conclusion Our results suggest a correlation between the MTHFR A1298C polymorphism and plasma folate concentration. Vitamin B(12) deficiency, reflected by increased MMA concentration, is an important risk factor for the development both of hyperhomocysteinemia and CAD.
Resumo:
The genetic constitution of Afro-derived Brazilian populations is barely studied. To improve that knowledge, we investigated the AluYAP element and five Y-chromosome STRs (DYS19, DYS390, DYS391, DYS392, and DYS393) to estimate ethnic male contribution in the constitution of four Brazilian quilombos remnants: Mocambo, Rio das Ras, Kalunga, and Riacho de Sacutiaba. Results indicated significant differences among communities, corroborating historical information about the Brazilian settlement. We concluded that besides African contribution, there was a great European participation in the constitution of these four populations and that observed haplotype variability could be explained by gene flow to quilombos remnants and mutational events in microsatellites (STRs). Am. J. Hum. Biol. 21:354-356, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
The HLA-G gene is predominantly expressed at the maternal-fetal interface. It has been associated with maternal-fetal tolerance and in the inhibition of cytotoxic T lymphocyte and natural killer cytolytic functions. At least two variations in the 3` untranslated region (UTR) of HLA-G locus are associated with HLA-G expression levels, the 14-bp deletion/insertion polymorphism and the +3142 single-nucleotide polymorphism (SNP). However, this region has not been completely characterized yet. The variability of the 3`UTR of HLA-G gene and its haplotype structure were characterized in 155 individuals from Brazil, as well as HLA-G alleles associated with each of the 3`UTR haplotype. The following eight variation sites were detected: the 14-bp polymorphism and SNPs at the positions +3003T/C, +3010C/G, +3027A/C, +3035C/T, +3142G/C, +3187A/G and +3196C/G. Similarly, 11 different 3`UTR haplotypes were identified and several HLA-G alleles presented only one 3`UTR haplotype. In addition, a high linkage disequilibrium among the variation sites was detected, especially among the 14-bp insertion and the alleles +3142G and +3187A, all previously associated with low mRNA availability, demonstrating that their effects are not independent. The detailed analyses of 3`UTR of the HLA-G locus may shed some light into mechanisms underlying the regulation of HLA-G expression. Genes and Immunity (2010) 11, 134-141; doi: 10.1038/gene.2009.74; published online 1 October 2009
Resumo:
Systemic lupus erythematosus (SLE) is an autoimmune disorder of the connective tissue with a wide and heterogeneous spectrum of manifestations, with renal and neurological involvement usually related to worse prognosis. SLE more frequently affects females of reproductive age, and a high prevalence and renal manifestation seem to be associated with non-European ethnicity. The present study aims to investigate candidate loci to SLE predisposition and evaluate the influence of ethnic ancestry in the disease risk and clinical phenotypic heterogeneity of lupus at onset. Samples represented by 111 patients and 345 controls, originated from the city of Belem, located in the Northern Region of Brazil, were investigated for polymorphisms in HLA-G, HLA-C, SLC11A1, MTHFR, CASP8 and 15 KIR genes, in addition to 89 Amerindian samples genotyped for SLC11A1. We also investigated 48 insertion/deletion ancestry markers to characterize individual African, European and Amerindian ancestry proportions in the samples. Predisposition to SLE was associated with GTGT deletion at the SLC11A1 3`UTR, presence of KIR2DS2 +/KIR2DS5 +/KIR3DS1 + profile, increased number of stimulatory KIR genes, and European and Amerindian ancestries. The ancestry analysis ruled out ethnic differences between controls and patients as the source of the observed associations. Moreover, the African ancestry was associated with renal manifestations. Lupus (2011) 20, 265-273.
Resumo:
Individual cancer susceptibility seems to be related to factors such as changes in oncogenes and tumor suppressor genes expression, and differences in the action of metabolic enzymes and DNA repair regulated by specific genes. Epidemiological studies on genetic polymorphisms of human xenobiotics metabolizing enzymes and cancer have revealed low relative risks. Research considering genetic polymorphisms prevalence jointly with environmental exposures could be relevant for a better understanding of cancer etiology and the mechanisms of carcinogenesis and also for new insights on cancer prognosis. This study reviews the approaches of molecular epidemiology in cancer research, stressing case-control and cohort designs involving genetic polymorphisms, and factors that could introduce bias and confounding in these studies. Similarly to classical epidemiological research, genetic polymorphisms requires considering aspects of precision and accuracy in the study design.
Resumo:
The International Agency for Research on Cancer classified formaldehyde as carcinogenic to humans because there is “sufficient epidemiological evidence that it causes nasopharyngeal cancer in humans”. Genes involved in DNA repair and maintenance of genome integrity are critically involved in protecting against mutations that lead to cancer and/or inherited genetic disease. Association studies have recently provided evidence for a link between DNA repair polymorphisms and micronucleus (MN) induction. We used the cytokinesis-block micronucleus (CBMN assay) in peripheral lymphocytes and MN test in buccal cells to investigate the effects of XRCC3 Thr241Met, ADH5 Val309Ile, and Asp353Glu polymorphisms on the frequency of genotoxicity biomarkers in individuals occupationally exposed to formaldehyde (n = 54) and unexposed workers (n = 82). XRCC3 participates in DNA double-strand break/recombination repair, while ADH5 is an important component of cellular metabolism for the elimination of formaldehyde. Exposed workers had significantly higher frequencies (P < 0.01) than controls for all genotoxicity biomarkers evaluated in this study. Moreover, there were significant associations between XRCC3 genotypes and nuclear buds, namely XRCC3 Met/Met (OR = 3.975, CI 1.053–14.998, P = 0.042) and XRCC3 Thr/Met (OR = 5.632, CI 1.673–18.961, P = 0.005) in comparison with XRCC3 Thr/Thr. ADH5 polymorphisms did not show significant effects. This study highlights the importance of integrating genotoxicity biomarkers and genetic polymorphisms in human biomonitoring studies.
Resumo:
Major depressive disorder (MDD) is a highly prevalent disorder, which has been associated with an abnormal response of the hypothalamus–pituitary–adrenal (HPA) axis. Reports have argued that an abnormal HPA axis response can be due to an altered P-Glycoprotein (P-GP) function. This argument suggests that genetic polymorphisms in ABCB1 may have an effect on the HPA axis activity; however, it is still not clear if this influences the risk of MDD. Our study aims to evaluate the effect of ABCB1 C1236T, G2677TA and C3435T genetic polymorphisms on MDD risk in a subset of Portuguese patients. DNA samples from 80 MDD patients and 160 control subjects were genotyped using TaqMan SNP Genotyping assays. A significant protection for MDD males carrying the T allele was observed (C1236T: odds ratio (OR) = 0.360, 95% confidence interval [CI]: [0.140– 0.950], p = 0.022; C3435T: OR= 0.306, 95% CI: [0.096–0.980], p = 0.042; and G2677TA: OR= 0.300, 95% CI: [0.100– 0.870], p = 0.013). Male Portuguese individuals carrying the 1236T/2677T/3435T haplotype had nearly 70% less risk of developing MDD (OR = 0.313, 95% CI: [0.118–0.832], p = 0.016, FDR p = 0.032). No significant differences were observed regarding the overall subjects. Our results suggest that genetic variability of the ABCB1 is associated with MDD development in male Portuguese patients. To the best of our knowledge, this is the first report in Caucasian samples to analyze the effect of these ABCB1 genetic polymorphisms on MDD risk.
Resumo:
RESUMO:Em 1994 a acrilamida (AA) foi classificada pela IARC como um provável cancerígeno para o homem. Para além da utilização de AA em numerosas aplicações industriais, a AA está também presente numa grande variedade de alimentos ricos em amido e processados a temperaturas elevadas. Esta exposição através da ingestão de produtos alimentares despoletou elevadas preocupações ao nível do risco para a saúde pública e poderá implicar um risco adicional para o aparecimento de cancro. A glicidamida (GA), o metabolito epóxido formado a partir da oxidação da AA provavelmente através do citocromo P450 2E1, é considerada por vários estudos, o principal responsável pela carcinogenicidade da AA. Actualmente existe uma escassez de resultados relativamente aos mecanismos de genotoxicidade da AA e GA em células de mamífero. Por este motivo, o objectivo deste estudo centra-se na avaliação das consequências genéticas da exposição à AA e GA, recorrendo-se para tal ao uso de células de mamífero como modelo. Tendo como base este objectivo avaliou-se a citotoxicidade da AA e GA, através do ensaio do MTT, e realizaram-se dois testes citogenéticos, o teste das aberrações cromossómicas (CAs) e o teste da troca de cromátides irmãs (SCEs), de modo a avaliar as lesões de DNA induzidas por estes compostos em células de hamster Chinês V79. Os resultados globalmente mostraram que a GA é mais citotóxica e clastogénica do que a AA. No âmbito deste trabalho, foi também efectuada a quantificação de aductos específicos de DNA, nomeadamente N7-(2-carbamoil-2-hidroxietil)guanina (N7-GA-Gua) e N3-(2-carbamoil-2-hidroxietil)adenina (N3-GA-Ade). Os resultados obtidos permitem afirmar que os níveis de N7-GA-Gua e a concentração de GA apresentam uma relação linear dose-resposta. Foi também identificada uma óptima correlação entre os níveis de N7-GA-Gua e a frequência de troca de cromátides irmãs. Adicionalmente, e de forma a compreender os mecanismos de toxicidade da AA, estudaram-se os mecanismos dependentes da modulação do glutationo reduzido (GSH), nomeadamente da butionina sulfoximina (BSO), um inibidor da síntese de GSH, do GSH-monoetil estér (GSH-EE), um composto permeável nas células e que é intra-celularmente hidrolisado a GSH e ainda do GSH adicionado exogenamente ao meio de cultura, em células V79. Os resultados obtidos reforçaram o papel da modulação do GSH nos efeitos de citotoxicidade e clastogenicidade da AA. Para além dos estudos efetuados com células V79, procedeu-se também à determinação da frequência de SCEs, à quantificação de aductos específicos de DNA, bem como ao ensaio do cometa alcalino em amostras de dadores saudáveis expostos à AA e GA. Tanto os resultados obtidos através do ensaio das SCE, como pela quantificação de aductos específicos de DNA, ambos efectuados em linfócitos estimulados, originaram resultados comparáveis aos obtidos anteriormente para as células V79, reforçando a ideia de que a GA é bastante mais genotóxica do que a AA. Por outro lado, os resultados obtidos pelo ensaio do cometa para exposição à AA e GA mostraram que apenas esta última aumenta o nível das lesões de DNA. Outro objectivo deste trabalho, foi a identificação de possíveis associações existentes entre as lesões de DNA, quantificadas através do ensaio das SCEs e do cometa, e biomarcadores de susceptibilidade, tendo em conta os polimorfismos genéticos individuais envolvidos na destoxificação e nas vias de reparação do DNA (BER, NER, HRR e NHEJ) em linfócitos expostos à GA. Tal permitiu identificar associações entre os níveis de lesão de DNA determinados através do ensaio das SCEs, e os polimorfismos genéticos estudados, apontando para uma possível associação entre o GSTP1 (Ile105Val) e GSTA2 (Glu210Ala) e a frequência de SCEs. Por outro lado, os resultados obtidos através do ensaio do cometa sugerem uma associação entre as lesões de DNA e polimorfismos da via BER (MUTYH Gln335His e XRCC1 Gln39Arg) e da via NER (XPC Ala499val e Lys939Gln), considerando os genes isoladamente ou combinados. Estes estudos contribuem para um melhor entendimento da genotoxicidade e carcinogenicidade da AA e GA em células de mamífero, bem como da variabilidade da susceptibilidade individual na destoxificação e reparação de lesões de DNA provocadas pela exposição a estes xenobióticos alimentares. ----------- ABSTRACT:Acrylamide (AA) has been classified as a probable human carcinogen by IARC. Besides being used in numerous industrial applications, AA is also present in a variety of starchy cooked foods. This AA exposure scenario raised concerns about risk in human health and suggests that the oral consumption of AA is an additional risk factor for cancer. A considerable number of findings strongly suggest that the reactive metabolite glycidamide (GA), an epoxide generated presumably by cytochrome P450 2E1, plays a central role in AA carcinogenesis. Until now there are a scarcity of results concerning the mechanisms of genotoxicity of AA and GA in mammalian cells. In view of that, the study described in this thesis aims to unveil the genetic consequences of AA and GA exposure using mammalian cells as a model system. With this aim we evaluated the cytotoxicity of AA and GA using the MTT assay and subsequently performed two cytogenetic end-points: chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs), in order to evaluate DNA damage induced by these compounds in V79 Chinese hamster cell line. The results showed that GA was more cytotoxic and clastogenic than AA. Within the scope of this thesis the quantification of specific DNA adducts were also performed, namely N7-(2-carbamoyl-2-hydroxyethyl)guanine (N7-GA-Gua) and N3-(2-carbamoyl-2-hydroxyethyl)adenine (N3-GA-Ade). Interestingly, the GA concentration and the levels of N7-GA-Gua presented a linear dose-response relationship. Further, a very good correlation between the levels of N7-GA-Gua and the extent of SCEs were observed. In order to understand the mechanisms of AA-induced toxicity, the modulation of reduced glutathione (GSH)-dependent mechanisms were studied, namely the evaluation of the effect of buthionine sulfoximine (BSO), an effective inhibitor of GSH synthesis, of GSH-monoethyl ester (GSH-EE), a cell permeable compound that is intracellularly hydrolysed to GSH and also of GSH endogenously added to culture medium,z in V79 cell line. The overall results reinforced the role of GSH in the modulation of the cytotoxic and clastogenic effects induced by AA.Complementary to the studies performed in V79 cells, SCEs, specific DNA-adducts and alkaline comet assay in lymphocytes from healthy donors exposed to AA and GA were also evaluated. Both, the frequency of SCE and the quantification of specific GA DNA adducts, produced comparable results with those obtained in V79 cell line, reinforcing the idea that GA is far more genotoxic than AA. Further, the DNA damaging potential of AA and GA in whole blood leukocytes evaluated by the alkaline comet assay, showed that GA, but not AA, increases DNA damage. Additionally, this study aimed to identify associations between DNA damage and biomarkers of susceptibility, concerning individual genetic polymorphisms involved in detoxification and DNA repair pathways (BER, NER, HRR and NHEJ) on the GA-induced genotoxicity assessed by the SCE assay and by the alkaline comet assay. The extent of DNA damage determined by the levels of SCEs induced by GA seems to be modulated by GSTP1 (Ile105Val) and GSTA2 (Glu210Ala) genotypes. Moreover, the results obtained from the comet assay suggested associations between DNA damage and polymorphisms of BER (MUTYH Gln335His and XRCC1 Gln399Arg) and NER (XPC Ala499Val and Lys939Gln) genes, either alone or in combination. The overall results from this study contribute to a better understanding of the genotoxicity and carcinogenicity of AA and GA in mammalian cells, as well as the knowledge about the variability in individual susceptibility involved in detoxification and repair of DNA damage due to these dietary xenobiotics.
Resumo:
INTRODUCTION: The present study investigated the association between mannose-binding lectin (MBL) gene polymorphism and serum levels with infection by HIV-1. METHODS: Blood samples (5mL) were collected from 97 HIV-1-infected individuals resident in Belém, State of Pará, Brazil, who attended the Special Outpatient Unit for Infections and Parasitic Diseases (URE-DIPE). CD4+ T-lymphocyte count and plasma viral load were quantified. A 349bp fragment of exon 1 of the MBL was amplified via PCR, using genomic DNA extracted from controls and HIV-1-infected individuals, following established protocols. MBL plasma levels of the patients were quantified using an enzyme immunoassay kit. RESULTS: Two alleles were observed: MBL*O, with a frequency of 26.3% in HIV-1-infected individuals; and the wild allele MBL*A (73.7%). Similar frequencies were observed in the control group (p > 0.05). Genotype frequencies were distributed according to the Hardy-Weinberg equilibrium in both groups. Mean MBL plasma levels varied by genotype, with statistically significant differences between the AA and AO (p < 0.0001), and AA and OO (p < 0.001) genotypes, but not AO and OO (p = 0.17). Additionally, CD4+ T-lymphocytes and plasma viral load levels did not differ significantly by genotype (p > 0.05). CONCLUSIONS: The results of this study do not support the hypothesis that MBL gene polymorphism or low plasma MBL concentrations might have a direct influence on HIV-1 infection, although a broader study involving a large number of patients is needed.
Resumo:
OBJECTIVE: To assess the risk factors, lipid and apolipoprotein profile, hemostasis variables, and polymorphisms of the apolipoprotein AI-CIII gene in early coronary artery disease (CAD). METHODS: Case-control study with 112 patients in each group controlled by sex and age. After clinical evaluation and nutritional instruction, blood samples were collected for biochemical assays and genetic study. RESULTS: Familial history of early CAD (64 vs 39%), arterial hypertension (69 vs 36%), diabetes mellitus (25 vs 3%), and previous smoking (71 vs 46%) were more prevalent in the case group (p<0.001). Hypertension and diabetes were independent risk factors. Early CAD was characterized by higher serum levels of total cholesterol (235 ± 6 vs 209 ± 4 mg/dL), of LDL-c (154 ± 5 vs 135 ± 4 mg/dL), triglycerides (205 ± 12 vs 143 ± 9 mg/dL), and apolipoprotein B (129 ± 3 vs 105 ± 3 mg/dL), and lower serum levels of HDL-c (40 ± 1 vs 46 ± 1 mg/dL) and apolipoprotein AI (134 ± 2 vs 146 ± 2mg/dL) [p<0.01], in addition to an elevation in fibrinogen and D-dimer (p<0.02). The simultaneous presence of the rare alleles of the APO AI-CIII genes in early CAD are associated with hypertriglyceridemia (p=0.03). CONCLUSION: Of the classical risk factors, hypertension and diabetes mellitus were independently associated with early CAD. In addition to an unfavorable lipid profile, an increase in the thrombotic risk was identified in this population. An additive effect of the APO AI-CIII genes was observed in triglyceride levels.
Resumo:
BACKGROUND:It is unknown whether specific viral polymorphisms affect in vivo therapeutic response in patients with cytomegalovirus (CMV) disease. Polymorphisms in the CMV glycoprotein B (gB) gene allow discrimination of 4 distinct genotypes (gB1-gB4). We assessed the influence of gB genotypes on the clinical and virologic outcome of CMV disease. METHODS:Solid-organ transplant recipients enrolled in a multicenter trial of CMV disease treatment (VICTOR study) were included in this study. CMV gB genotyping was performed using quantitative real-time polymerase chain reaction at day 0 (start of antiviral therapy). RESULTS:Among 239 patients with CMV disease, the prevalence of gB strain types was 26% for gB1, 10% for gB2, 10% for gB3, and 5% for gB4, whereas mixed infections were present in 49%. Donor-seropositive/recipient-seropositive patients were more likely to have mixed gB infection than donor-seropositive/recipient-seronegative patients (40% vs. 12%; P = .001). Median baseline viral loads were higher and time to viral eradication was longer ( P = .006 and P = .026 , respectively) for mixed infection versus infection with a single genotype. In a multivariate model, mixed gB infection was a significant predictor of failure to eradicate virus by day 21 (mixed vs single genotype; odds ratio, 2.66; 95% confidence interval, 1.31-5.38; P = .007 ) after controlling for baseline viral load, CMV serostatus at baseline, ganciclovir resistance, and antiviral treatment. No effect of gB genotype was seen on virologic or clinical CMV recurrence. CONCLUSIONS:No specific gB genotype appears to confer a specific CMV virulence advantage. However, mixed gB genotype infections are associated with higher viral loads and delayed viral clearance.