466 resultados para polyaniline (PANI)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polyaniline (PANI) has been studied as an active material for electrochemical capacitors. Polymerization of aniline to PANI has been carried out potentiodynamically on a stainless steel (SS) substrate, instead of Pt-based substrates generally employed for this application. The PANI/SS electrodes have been evaluated by assembling symmetrical capacitors in NaClO(4) + HClO(4) mixed electrolyte and subjecting them to galvanostatic charge/discharge cycles between 0 and 0.75 V. The effect of substrate has been assessed by comparing the capacitance of PANI/SS and PANI/Pt electrodes. The capacitance of PANI/SS electrode is higher than that of PANI/Pt electrode by several times. The effect of sweep rate of potentiodynamic deposition of PANI/SS on capacitance has been investigated. At a power density of 0.5 kW kg(-1), a capacitance value of 815 F g(-1) of PANI is obtained for the deposition sweep rate of 200 mV s(-1). Increase in thickness of PANI on the SS substrate results in an increase in capacitance of PANI. This value of capacitance is the highest ever reported for any electrochemical capacitor material. Thus, in addition to a favorable economic aspect involved in using SS instead of Pt or Pt-based substrate, the advantage of higher capacitance of PANI has also been achieved. (C) 2002 The Electrochemical Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polyaniline (PANI) and PANI/CNT (multiwall carbon nanotubes, CNT) composites were prepared using an oxidative chemical polymerization method with ammonium persulfate and dodecyl benzene sulfonic acid as the oxidizing agent and surfactant, respectively. Fourier-transform infrared spectroscopy spectra illustrate the presence of PANI in the composite and show that some interaction exists between PANI and CNT. Embedding of CNT in the PANI matrix is confirmed by scanning electron micrography. Conductivity of the PANI/CNT composites was higher than that of pure PANI, and the maximum conductivity obtained was 4.44 S/cm at 20 wt.% CNT.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In situ electrochemical polymerization of aniline in a Langmuir trough under applied surface pressure assists in the preferential orientation of polyaniline (PANI) in planar polaronic structure. Exfoliated graphene oxide (EGO) spread on water surface is used to bring anilinium cations present in the subphase to air-water interface through electrostatic interactions. Subsequent electrochemical polymerization of aniline under applied surface pressure in the Schaefer mode results in EGO/PANT composite with PANT in planar polaronic form. The orientation of PANI is confirmed by electrochemical and Raman spectroscopic studies. This technique opens up possibilities of 2-D polymerization at the air-water interface. Electrochemical sensing of hydrogen peroxide is used to differentiate the activity of planar and coiled forms of PANI toward electrocatalytic reactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High molecular weight polyaniline (PANI) was synthesized by a combined procedure incorporating various synthesis methods. Temperature and open circuit potential of the reaction mixture were collected to monitor the reaction progress. The polymer is characterized by various techniques including gel permeation chromatography, dynamic light scattering, infrared spectroscopy, solid-state nuclear magnetic resonance, and differential scanning calorimetry for elucidating the molecular architecture obtained by this method. As-synthesized PANI was found to possess high molecular weight, reduced branching, reduced cross-linking, and to predominantly consist of linear polymer chains. This polymer was also found to be more stable in solution form. JV characteristics of as-synthesized PANI films indicate a high current density which is due to increased free pathways and less traps for the charge transport to occur in PANI films. POLYM. ENG. SCI., 2012. (C) 2012 Society of Plastics Engineers

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electromagnetic field interactions with the composites made up of polyaniline (PANI) and single wall carbon nanotube (SWCNT) are simulated using the discrete dipole approximation. Recent observations on polymer nano-composites explain the interface interactions between the PANI host and the carbon nanostructures. These types of composite have potential applications in organic solar cell, gas sensor, bio-sensor and electro-chromic devices. Various nanostructures of PANI is possible in the form of nanowires, nanodisks, nanofibers and nanotubes have been reported. In the present study, we considered two types of composite, one is the PANI wrapped CNT and the other is CNT immersed in PANI nanotube. We use Modified Thole's parameters for calculating frequency dependent atomic polarizability of composites. Absorption spectra of the composites are studied by illuminating a wide range of electromagnetic energy spectrum. From the absorption spectra, we observe plasmon excitation in near-infrared region similar to that in SWCNTs reported recently. The interactions between the PANI and CNT in the composite, resulting electromagnetic absorptions are simulated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline (PANI) due to its wide application in different fields. In the present work nickel ferrite (NiFe2O4) nanoparticles were prepared by sol-gel citrate-nitrate method with an average size of 21.6nm. PANI/NiFe2O4 nanoparticles were synthesized by a simple general and inexpensive in-situ polymerization in the presence of NiFe2O4 nanoparticles. The effects of NiFe2O4 nanoparticles on the dc-electrical properties of polyaniline were investigated. The structural components in the nanocomposites were identified from Fourier Transform Infrared (FTIR) spectroscopy. The crystalline phase of nanocomposites was characterized by X-Ray Diffraction (XRD). The Scanning Electron Micrograph (SEM) reveals that there was some interaction between the NiFe2O4 particles and polyaniline and the nanocomposites are composed of polycrystalline ferrite nanoparticles and PANI. The dc conductivity of polyaniline/NiFe2O4 nanocomposites have been measured as a function of temperature in the range of 80K to 300K. It is observed that the room temperature conductivity sigma(RT) decreases with increase in the relative content of NiFe2O4. The experimental data reveals that the resistivity increases for all composites with decrease of temperature exhibiting semiconductor behaviour.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Performance of supercapacitors based on 1:1 (by weight) composites of polyaniline (PANI) with nanosheets of nitrogenated reduced graphene oxide (NRGO), BC1.5N, MoS2 and WS2 has been investigated in detail. The highest specific capacitance is found with the 1:1 NRGO-PANI composite, the value being 561 F/g at a current density of 0.2 A/g. All the 1:1 nanocomposites show good cyclability. Increasing the PANI content increases the specific capacitance and the highest value found being 715 F/g at a current density of 0.5 A/g in the case of the 1:6 NRGO-PANI composite. However, all the 1:6 composites show a marked decrease in specific capacitance with increase in current density. The energy density of 1:6 NRGO-PANI is similar to 25 Wh/Kg at 0.5 A/g and 1:1 NRGO-PANI is similar to 19 Wh/Kg at 0.2 A/g. NRGO-PANI composites clearly stand out as viable materials for practical applications. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work we show dipole-assisted photogated switching by covalent grafting of photoactive molecules to conducting polymers. Photochromic spiropyran molecules were covalently attached to polyaniline (PANI) nanowires via N-alkylation reaction to the quinoic part of PANI. Upon irradiation with ultraviolet light spiropyran transformed to a large dipole containing molecule, merocyanine form. We show that this transformation leads to a substantial (ca. 2 orders of magnitude) increase in conductance of the photochromic PANI nanowires, which were evident by an increase in field-effect mobility and calculated band gap narrowing of the system. Finally, this transformation was found to be fully reversible with no significant photofatigue. © 2011 American Chemical Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes a facile route for simultaneous synthesis of polyaniline (PANI) nanotubules and gold nanoplates. The inner diameter of PANI nanotubules was less than 10 nm and the length was several micrometers. At the same time, uniform single-crystal gold nanoplates with thicknesses of tens of nanometers were obtained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polyaniline/magnetite nanocomposites consisting of polyaniline (PANI) nanorods surrounded by magnetite nanoparticles were prepared via an in situ self-assembly process in the presence of PANI nanorods. The synthesis is based on the well-known chemical oxidative polymerization of aniline in an acidic environment, with ammonium persulfate (APS) as the oxidant. An organic acid (dodecylbenzenesulfonic acid, DBSA) was used to replace the conventional strong acidic (1 M HCl) environment. Here, dodecylbenzenesulfonic acid is used not only as dopant, but also as surfactant in our reaction system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The macroscopic mechanical properties of polyaniline (PANI) lie mainly on two factors, the structure of molecular aggregations of polymers and the mechanical properties of a single polymer chain. The former factor is swell revealed; however, the latter is rarely studied. In this article, we have employed atomic force microscopy-based single-molecule force spectroscopy to investigate the mechanical properties of a kind of water-soluble PANI at a single-molecular level. We have carried out the study comparatively on single-chain-stretching experiments of oxidized, reduced, and doped PANI and obtained a full view of the single-chain elasticity of PANI in all these states. It is found that oxidized and reduced PANI chains are rigid, and the oxidized PANI is more rigid than the reduced PANI. Such a difference in single-chain elasticity can be rationalized by the molecular structures that are composed of benzenoid diamine and quinoid diimine its different proportions. The doped PANI has been found to be more flexible than the oxidized and reduced PANI, and the modified freely jointed chain parameters of doped PANI are similar with those of a common flexible-chain polymer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A simple and facile procedure to synthesize a novel hybrid nanoelectrocatalyst based on polyaniline (PANI) nanofiber-supported supra-high density Pt nanoparticles (NPs) or Pt/Pd hybrid NPs without prior PANI nanofiber functionalization at room temperature is demonstrated. This represents a new type of ID hybrid nanoelectrocatalyst with several important benefits. First, the procedure is very simple and can be performed at room temperature using commercially available reagents without the need for templates and surfactants. Second, ultra-high density small "bare" Pt NPs or Pt/Pd hybrid NPs are grown directly onto the surface of the PANI nanofiber, without using any additional linker. Most importantly, the present PANI nanofiber-supported supra-high density Pt NPs or Pt/Pd hybrid NPs can be used as a signal enhancement element for constructing electrochemical devices with high performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In an attempt to increase the interface stability of carbon used in Li-ion batteries, a thin conducting polyaniline (PANI) film was fabricated on the surface of carbon by in situ chemical polymerization. The chemical and electrochemical properties of the composite material were characterized using X-ray diffraction, Raman spectroscopy, scanning electron microscope, cyclic voltammetry, and electrochemical impedance spectroscopy. It was confirmed that the PANI film has an obvious effect on the morphology and the electrochemical performance of carbon. The results could be attributed to the electronic and electrochemical activity of the conducting PANI films.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI-DBSA). PANI-DBSA, low-density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin-rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI-DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI-DBSA/LDPE, and this was attributed to the PANI-DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high-resolution optical microscopy indicated that PANI-DBSA formed a conducting network at a high concentration of PANI-DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured.