89 resultados para polaron
Resumo:
The character of the electronic ground state of La0.5Ca0.5MnO3 has been addressed with quantum chemical calculations on large embedded clusters. We find a charge ordered state for the crystal structure reported by Radaelli et al. [Phys. Rev. B 55, 3015 (1997)] and Zener polaron formation in the crystal structure with equivalent Mn sites proposed by Daoud-Aladine et al. [Phys. Rev. Lett. 89, 097205 (2002)]. Important O to Mn charge transfer effects are observed for the Zener polaron.
Resumo:
Nanoparticles of manganese ferrite were prepared by the chemical co-precipitation technique. The dielectric parameters, namely, real and imaginary dielectric permittivity (ε and ε ), ac conductivity (σac) and dielectric loss tangent (tan δ), were measured in the frequency range of 100 kHz–8MHz at different temperatures. The variations of dielectric dispersion (ε ) and dielectric absorption (ε ) with frequency and temperature were also investigated. The variation of dielectric permittivity with frequency and temperature followed the Maxwell–Wagner model based on interfacial polarization in consonance with Koops phenomenological theory. The dielectric loss tangent and hence ε exhibited a relaxation at certain frequencies and at relatively higher temperatures. The dispersion of dielectric permittivity and broadening of the dielectric absorption suggest the possibility of a distribution of relaxation time and the existence of multiple equilibrium states in manganese ferrite. The activation energy estimated from the dielectric relaxation is found to be high and is characteristic of polaron conduction in the nanosized manganese ferrite. The ac conductivity followed a power law dependence σac = Bωn typical of charge transport assisted by a hopping or tunnelling process. The observed minimum in the temperature dependence of the frequency exponent n strongly suggests that tunnelling of the large polarons is the dominant transport process
Resumo:
Far-infrared transitions in polar semiconductors are known to be affected by the presence of shallow donor impurities, external magnetic fields and the electron-LO-phonon interaction. We calculate the magnetodonor states in indium phosphide by a diagonalization procedure, and introduce the electron-phonon interaction by the Frohlich term. The main effects of this perturbation are calculated by a multi-level version of the Wigner-Brillouin theory. We determine the transition energies, from the ground state to excited states, and find good qualitative agreement with recently reported absorption-spectroscopy measurements in the 100-800 cm(-1) range, with applied magnetic fields up to 30 T. Our calculations suggest that experimental peak splittings in the 400-450 cm(-1) range are due to the electron-phonon interaction.
Resumo:
Far-infrared transitions in polar semiconductors are known to be affected by the presence of shallow donor impurities, external magnetic fields and the electron-LO-phonon interaction. We calculate the magnetodonor states in indium phosphide by a diagonalization procedure, and introduce the electron-phonon interaction by the Frohlich term. The main effects of this perturbation are calculated by a multi-level version of the Wigner-Brillouin theory. We determine the transition energies, from the ground state to excited states, and find good qualitative agreement with recently reported absorption-spectroscopy measurements in the 100-800 cm(-1) range, with applied magnetic fields up to 30 T. Our calculations suggest that experimental peak splittings in the 400-450 cm(-1) range are due to the electron-phonon interaction.
Resumo:
We study a one-dimensional lattice model of interacting spinless fermions. This model is integrable for both periodic and open boundary conditions; the latter case includes the presence of Grassmann valued non-diagonal boundary fields breaking the bulk U(1) symmetry of the model. Starting from the embedding of this model into a graded Yang-Baxter algebra, an infinite hierarchy of commuting transfer matrices is constructed by means of a fusion procedure. For certain values of the coupling constant related to anisotropies of the underlying vertex model taken at roots of unity, this hierarchy is shown to truncate giving a finite set of functional equations for the spectrum of the transfer matrices. For generic coupling constants, the spectral problem is formulated in terms of a functional (or TQ-)equation which can be solved by Bethe ansatz methods for periodic and diagonal open boundary conditions. Possible approaches for the solution of the model with generic non-diagonal boundary fields are discussed.
Resumo:
We investigate the photoexcited state dynamics in a donor-acceptor copolymer, poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]- pyrrole-1,4-dione-alt-naphthalene} (pDPP-TNT), by picosecond fluorescence and femtosecond transient absorption spectroscopies. Timeresolved fluorescence lifetime measurements of pDPP-TNT thin films reveal that the lifetime of the singlet excited state is 185 ± 5 ps and that singlet-singlet annihilation occurs at excitation photon densities above 6 × 1017 photons/cm3. From the results of singlet-singlet annihilation analysis, we estimate that the single-singlet annihilation rate constant is (6.0 ± 0.2) × 109cm3 s-1 and the singlet diffusion length is -7 nm. From the comparison of femtosecond transient absorption measurements and picosecond fluorescence measurements, it is found that the time profile of the photobleaching signal in the charge-transfer (CT) absorption band coincides with that of the fluorescence intensity and there is no indication of long-lived species, which clearly suggests that charged species, such as polaron pairs and triplet excitons, are not effectively photogenerated in the neat pDPP-TNT polymer.
Resumo:
The phase-interconversions between the spinel-, brownmillerite-, defect rocksalt and perovskite-type structures have been investigated by way of (i) introducing deficiency in A-sites in CaxMn2-xO3 (0.05 <= x <= 1) i.e., by varying Ca/Mn ratio from 0.025 to 1 and (ii) nonstoichiometric CaMnO3-delta (CMO) with 0.02 <= delta <= 1. The temperature dependence of resistivity (rho-T) have been investigated on nonstoichiometric CaMnO3-delta (undoped) as well as the CMO substituted with donor impurities such as La3+, Y3+, Bi3+ or acceptor such as Na1+ ion at the Ca-site. The rho-T characteristics of nonstoichiometric CaMnO3-delta is strongly influenced by oxygen deficiency, which controls the concentration of Mn3+ ions and, in turn, affects the resistivity, rho. The results indicated that the substitution of aliovalent impurities at Ca-site in CaMnO3 has similar effects as of CaMnO3-delta ( undoped) annealed in atmospheres of varying partial pressures whereby electron or hole concentration can be altered, yet the doped samples can be processed in air or atmospheres of higher P-O2. The charge transport mechanisms of nonstoichiometric CaMnO3-delta as against the donor or acceptor doped CaMnO3 (sintered in air, P-O2 similar to 0.2 atm) have been predicted. The rho (T) curves of both donor doped CaMnO3 as well as non-stoichiometric CaMnO3-delta, is predictable by the small polaron hopping (SPH) model, which changes to the variable range hopping (VRH) at low temperatures whereas the acceptor doped CaMnO3 exhibited an activated semiconducting hopping ( ASH) throughout the measured range of temperature (10-500 K).
Resumo:
The correlation between magnetic and transport properties is examined by studying poly(4,4'-methylenedianiline)(PMDA) salts and their bases using EPR and conductivity measurements. Five different PMDA salts (doped polymers)were prepared by chemical polymerization of 4,4'-methylenedianiline using different protonic acids. The PMDA bases were obtained by dedoping the salts using ammonium hydroxide. Ambient temperature electrical conductivity measurements show evidence for the doped PMDA system to be highly disordered. The EPR spectra of the samples were recorded in the range 20-200 "C, and the results were analyzed on the basis of the polaron-bipolaron model, which is typical of nondegenerate systems. Both PMDA salts and their bases consist of self-trapped, highly mobile polarons or radical cations. EPR studies on PMDA salts show evidence for the presence of thermally activated and temperature independent (or Pauli type) paramagnetism while the bases show thermally activated, Pauli and Curie-Weiss types of paramagnetism. The paramagnetism arises due to polarons.It is proposed that charge transport takes place through both polarons and bipolarons.
Resumo:
The temperature and frequency dependence of dielectric permittivity and dielectric loss of nanosized Mn1-xZnxFe2O4 (for x = 0, 0.2, 0.4, 0.6, 0.8, 1) were investigated. The impact of zinc substitution on the dielectric properties of the mixed ferrite is elucidated. Strong dielectric dispersion and broad relaxation were exhibited by Mn1-xZnxFe2O4. The variation of dielectric relaxation time with temperature suggests the involvement of multiple relaxation processes. Cole-Cole plots were employed as an effective tool for studying the observed phenomenon. The activation energies were calculated from relaxation peaks and Cole-Cole plots and found to be consistent with each other and indicative of a polaron conduction.
Resumo:
We mention here an unusual disorder effect in manganites, namely the ubiquitous hopping behavior for electron transport observed in them over a wide range of doping. We argue that the implied Anderson localization is intrinsic to manganites, because of the existence of polarons in them which are spatially localized, generally at random sites (unless there is polaron ordering). We have developed a microscopic two fluid lb model for manganites, where l denotes lattice site localized l polarons, and b denotes band electrons. Using this, and the self-consistent theory of localization, we show that the occupied b states are Anderson localized in a large range of doping due to the scattering of b electrons from l polarons. Numerical simulations which further include the effect of long range Coulomb interactions support this, as well the existence of a novel polaronic Coulomb glass. A consequence is the inevitable hopping behaviour for electron transport observed in doped insulating manganites.
Resumo:
Annealing dependence of the lattice parameter, resistivity, magnetoresistance and thermopower have been studied on Nd0.87Sr0.33MnO3 thin films deposited on LaAlO3 and alumina substrates by pulsed laser ablation. Upon annealing at 800 degrees C and 1000 degrees C the lattice constant of the LaAlO3 film tends toward that of the bulk target due to reduction in oxygen vacancies. This results in a metal-insulator transition at temperatures which increase with progressive annealing along with a decrease in the observed low temperature MR. Using a magnon scattering model we estimate the e(g) bandwidth of the film annealed at 1000 degrees C and show that the magnon contribution to the resistivity is suppressed in a highly oxygen deficient film and gains prominence only upon subsequent annealing. We also show that upon annealing, the polaron concentration and the spin cluster size increases in the paramagnetic phase, using an adiabatic polaron hopping model which takes into account an exchange dependent activation energy above the resistivity peak.
Resumo:
The conductivity of highly doped polypyrrole is less than that of intermediately doped samples, by two orders of magnitude, at 4.2 K. This may be due to more number of bipolarons in highly doped samples. Bipolarons require four times more activation energy than single polarons to hop by thermally induced virtual transitions to intermediate dissociated polaron states than by the nondissociated process. The conduction process in these polyconjugated systems involve ionization from deep trapped states, having a View the MathML source dependence, hopping from localised states, having View the MathML source dependence, and intersite tunnel percolation, having T−1 dependence. The interplay of these factors leads to a better fit by View the MathML source. The mechanism for this exponential behaviour need not be same as that of Motts variable range hopping. Conduction by percolation is possible, if an infinite cluster of chains can be connected by impurity centers created by dopant ions. The tendency for the saturation of conductivity at very low temperatures is due to the possibility of intersite tunnel percolation is disordered polaronic systems.
Resumo:
Strontium-doped lanthanum chromites, La1−xSrxCrO3, have been synthesised to investigate the effect of strontium doping on the stability and physico-chemical characteristics of the perovskite LaCrO3. Both microscopic and X-ray examinations show that the materials exist as single phase perovskite structure for all compositions up to 50 mole% strontium substitution. The materials have been further characterized by infrared and electron paramagnetic resonance spectra. These materials show a good sinterability even in air at 1773 K. Electrical conductivity of thse perovskites has been measured as a function of temperature. Electrical conductivity has been found to be a maximum at x=0.2. The observed electrical and magnetic properties are consistent with activated polaron transport as the mechanism for electrical conduction in these materials.
Resumo:
The strikingly different charge transport behaviours in nanocomposites of multiwall carbon nanotubes (MWNTs) and conducting polymer polyethylenedioxythiophene-polystyrene-sulfonic-acid (PEDOT-PSS) at low temperatures are explained by probing their conformational properties using small-angle x-ray scattering (SAXS). The SAXS studies indicate the assembly of elongated PEDOT-PSS globules on the walls of nanotubes, coating them partially, thereby limiting the interaction between the nanotubes in the polymer matrix. This results in a charge transport governed mainly by small polarons in the conducting polymer despite the presence of metallic MWNTs. At T > 4 K, hopping of the charge carriers following one-dimensional variable range hopping is evident which also gives rise to a positive magnetoresistance (MR) with an enhanced localization length (similar to 5 nm) due to the presence of MWNTs. However, at T < 4 K, the observation of an unconventional positive temperature coefficient of resistivity is attributed to small polaron tunnelling. The exceptionally large negative MR observed in this temperature regime is conjectured to be due to the presence of quasi-1D MWNTs that can aid in lowering the tunnelling barrier across the nanotube-polymer boundary resulting in large delocalization.
Resumo:
The crystal structure, thermal expansion and electrical conductivity of strontium-doped neodymium ferrite (Nd1-xSrxFeO3-delta where 0less than or equal toxless than or equal to0.4) were investigated. All compositions had the GdFeO3-type orthorhombic perovskite structure. The lattice parameters were determined at room temperature by X-ray powder diffraction. The orthorhombic distortion decreases with increasing Sr substitution. The pseudocubic lattice parameter shows a minimum at x=0.3. The thermal expansion curves for x=0.2-0.4 displayed rapid increase in slope at higher temperatures. The electrical conductivity increased with Sr content and temperature. The calculated activation energies for electrical conduction decreased with increasing x. The electrical conductivity can be described by the small polaron hopping mechanism. The charge compensation for divalent ion on the A-site is provided by the formation of Fe4+ ions on the B site and vacancies on the oxygen sublattice. The results indicate two defect domains: for low values of x, the predominant defect is Fe4+ ions, whereas for higher values of x, oxygen vacancies dominate. (C) 2002 Elsevier Science B.V. All rights reserved.