974 resultados para plate tectonics
Resumo:
We present a new hypothesis that relates global plate tectonics to the formation of marginal basins, island arcs, spreading ridges and arc-shaped mountain belts around the North Pacific Ocean. According to our model, the ellipsoidal-shaped Paleogene basins of the South China Sea, Parece-Vela Basin, Shikoku Basin, Sea of Japan and the Sea of Okhotsk in addition to those of the North American Cordillera can be attributed to the change in plate convergence direction at 42 Ma between the Indoaustralian and Eurasian plates. The new direction of convergence was parallel to the eastern continental margin of Asia and resulted in widespread extension perpendicular to this margin and to the western margin of North America. Both margins form part of a circle parallel to the Indoaustralian-Eurasian direction of convergence.
Resumo:
In the Catalonian Coastal Ranges, Paleozoic sedimentary and meta-sedimentary rocks crop out in severa1 areas, intruded by late tectonic Hercynian granitoids and separated by Mesozoic and Tertiary cover sediments. Large structures are often difficult to recognize, although a general east-west trend can be observed on the geological map. Deformation was accompanied by the development of cleavages and regional metamorphism. Green-schist facies rocks are prominent throughout the Ranges, while amphibolite facies are restricted to small areas. In low-grade areas, the main deformation phase generated south-facing folds with an axial plane cleavage (slaty cleavage in metapelitic rocks). The intersection lineation (Ss/Sl) and the axes of minor folds trend cast-west, as do all mapable structures. Late deformations generated coarse crenulations, small chevrons and kink-bands, all intersecting the slaty cleavage at high angles. In medium- to high-grade areas no major folds have been observed. In these areas, the main foliation is a schistosity and is often folded, giving centimetric to decimetric, nearly isoclinal intrafolial folds. In schists, these folds aremuchmore common than inother lithologies, and can be associated with a crenulation cleavage. All these planar structures in high-grade rocks are roughly parallel. The late Hercynian deformational events, which gave rise to the crenulations and small chevrons, also produced large (often kilometric) open folds which fold the slaty cleavage and schistosity. As aconsequence, alternating belts with opposite dip (north and south) of the main foliation were formed. With respect to the Hercynian orogenic belt, the Paleozoic outcrops of the Catalonian Coastal Ranges are located within the northern branch of the Ibero-Armorican arc, and have a relatively frontal position within the belt. The Carboniferous of the Priorat-Prades area, together with other outcrops in the Castellón Province, the Montalbán massif (Iberian Chain) and the Cantabrian zone (specially the Pisuerga-Carrión Province) probably form part of a wide area of foreland Carboniferous deposition placed at the core of the arc.
Resumo:
The present work, derived from a full global geodynamic reconstruction model over 600 Ma and based on a large database, focuses herein on the interaction between the Pacific, Australian and Antarctic plates since 200 Ma, and proposes integrated solutions for a coherent, physically consistent scenario. The evolution of the Australia-Antarctica-West Pacific plate system is dependent on the Gondwana fit chosen for the reconstruction. Our fit, as defined for the latest Triassic, implies an original scenario for the evolution of the region, in particular for the "early" opening history of the Tasman Sea. The interaction with the Pacific, moreover, is characterised by many magmatic arc migrations and ocean openings, which are stopped by arc-arc collision, arc-spreading axis collision, or arc-oceanic plateau collision, and subduction reversals. Mid-Pacific oceanic plateaus created in the model are much wider than they are on present-day maps, and although they were subducted to a large extent, they were able to stop subduction. We also suggest that adduction processes (i.e., re-emergence of subducted material) may have played an important role, in particular along the plate limit now represented by the Alpine Fault in New Zealand.
Resumo:
La campaña oceanográfica franco-japonesa Yokosuka 90, llevada a cabo del 10 de Enero al 6 de Febrero de 1991, tuvo por objeto el estudio geológico y geofísico del segmento de segundo orden o ramal de dirección N160 de la dorsal de la Cuenca Nor-Fidjiana (Pacífico sudoeste). Este ramal es especialmente interesante, no sólo por estar situado en una cuenca de tras-arco, sino también en el marco de las hipótesis que intentan establecer las relaciones entre tasas de expansión y morfoestructura en las dorsales oceánicas. Así, en el ramal estudiado coinciden una tasa de expansión intermedia (5 cm/a) y una morfología típica de dorsal lenta. Dicho ramal, segmentado y constituido por una sucesión de crestas y de grabens desplazados lateralmente, se sitúa entre dos puntos mples, uno de tipo dorsal-dorsal-zona de fractura (RRF), al sur, y otro, de tipo dorsal-dorsal-dorsal (RRR), al norte. El ramal N160 de la Cuenca Nor-Fidjiana es, por otra parte, extremadamente joven ya que de acuerdo con las anomalías magnéticas se habna formado durante un episodio volcano-tectónico iniciado hace menos de 1 Ma.
Resumo:
La Dorsal Sur de Scotia (DSS) constituye une frontera de placas transformante con sentido senestral, que limita las placas de Scotia, al norte, y Antártica, al sur. Durante la campaña de geología y geofísica marinas 'Scotia 92', realizada en Febrero de 1992 a bordo del BIO Hespérides, se ha estudiado su extremo occidental y sectores próximos a la Cuenca de Bransfield, entre el margen nor-occidental de la Península Antártica y las islas Shetland del Sur, Elefante y Orcadas del Sur. Al norte y sur de la DSS se desarrollan las cuencas de Scotia y de Powell, respectivamente. Los datos de sísmica de multicanal, magnetismo y gravimetna obtenidos muestran caracteristicas diferenciales entre ambas cuencas. La morfoestructura de la DSS, formada por dos crestas paralelas separadas por una profunda depresión axial, ha sido recubierta mediante perfilaje de multihaz con el sistema SIMRAD EM-12 en una área de 50 x 100 km. La batimetría resultante ha permitido reconocer en detalle las caracteristicas de una depresión de más de 5.300 m de profundidad y de 10 a 30 km de anchura, bautizada como Fosa Hespérides. En ella se aprecia la existencia de dos famílias de lineaciones, la primera de dirección E-W y paralela al límite de placas, y la segunda de dirección NW-SE. La primera acomodaría el movimiento cizallante regional mientras que la segunda estaría asociada con una componente extensional probablemente relacionada con la dirección de la Cuenca de Bransfield. La forma romboédrica de la fosa está determinada por la interacción de ambas famílias de lineaciones. Teniendo en cuenta que el límite de placas transcurre entre las dos crestas, interpretamos la Fosa Hespérides como una cuenca de pull-apart desarrollada como consecuencia del movimiento de cizalla a lo largo de la DSS.
Resumo:
The Pyrenean mountain range is a slowly deforming belt with continuous and moderate seismic activity. To quantify its deformation field, we present the velocity field estimated from a GPS survey of the Pyrenees spanning 18 yr. The PotSis and ResPyr networks, including a total of 85 GPS sites, were installed and first measured in 1992 and 1995 1997, respectively, and remeasured in 2008 and 2010. We obtain a deformation field with velocities less than 1 mm yr−1 across the range. The estimated velocities for individual stations do not differ significantly from zero with 95 per cent confidence. Even so, we estimate a maximum extensional horizontal strain rate of 2.0 ± 1.7 nanostrain per year in a N S direction in the western part of the range. We do not interpret the vertical displacements due to their large uncertainties. In order to compare the horizontal strain rates with the seismic activity, we analyse a set of 194 focal mechanisms using three methods: (i) the 'r' factor relating their P and T axes, (ii) the stress tensors obtained by fault slip inversion and (iii) the strain-rate tensors. Stress and strain-rate tensors are estimated for: (i) the whole data set, (ii) the eastern and western parts of the range separately, and (iii) eight zones, which are defined based on the seismicity and the tectonic patterns of the Pyrenees. Each of these analyses reveals a lateral variation of the deformation style from compression and extension in the east to extension and strike-slip in the west of the range. Although the horizontal components of the strain-rate tensors estimated from the seismic data are slightly smaller in magnitude than those computed from the GPS velocity field, they are consistent within the 2σ uncertainties. Furthermore, the orientations of their principal axes agree with the mapped active faults.
Resumo:
The establishment of a geological correlation between northwest Africa and northeast Brazil faces a series of problems of both a virtual and a real nature. Several aspects are summarised in this work that include pre-Mesozoic and Mesozoic features on both continental sides. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Aim Parrots are thought to have originated on Gondwana during the Cretaceous. The initial split within crown group parrots separated the New Zealand taxa from the remaining extant species and was considered to coincide with the separation of New Zealand from Gondwana 82-85 Ma, assuming that the diversification of parrots was mainly shaped by vicariance. However, the distribution patterns of several extant parrot groups cannot be explained without invoking transoceanic dispersal, challenging this assumption. Here, we present a temporal and spatial framework for the diversification of parrots using external avian fossils as calibration points in order to evaluate the relative importance of the influences of past climate change, plate tectonics and ecological opportunity. Location Australasian, African, Indo-Malayan and Neotropical regions. Methods Phylogenetic relationships were investigated using partial sequences of the nuclear genes c-mos, RAG-1 and Zenk of 75 parrot and 21 other avian taxa. Divergence dates and confidence intervals were estimated using a Bayesian relaxed molecular clock approach. Biogeographic patterns were evaluated taking temporal connectivity between areas into account. We tested whether diversification remained constant over time and if some parrot groups were more species-rich than expected given their age. Results Crown group diversification of parrots started only about 58 Ma, in the Palaeogene, significantly later than previously thought. The Australasian lories and possibly also the Neotropical Arini were found to be unexpectedly species-rich. Diversification rates probably increased around the Eocene/Oligocene boundary and in the middle Miocene, during two periods of major global climatic aberrations characterized by global cooling. Main conclusions The diversification of parrots was shaped by climatic and geological events as well as by key innovations. Initial vicariance events caused by continental break-up were followed by transoceanic dispersal and local radiations. Habitat shifts caused by climate change and mountain orogenesis may have acted as a catalyst to the diversification by providing new ecological opportunities and challenges as well as by causing isolation as a result of habitat fragmentation. The lories constitute the only highly nectarivorous parrot clade, and their diet shift, associated with morphological innovation, may have acted as an evolutionary key innovation, allowing them to explore underutilized niches and promoting their diversification.
Resumo:
The Hawaiian-Emperor hotspot track has a prominent bend, which has served as the basis for the theory that the Hawaiian hotspot, fixed in the deep mantle, traced a change in plate motion. However, paleomagnetic and radiometric age data from samples recovered by ocean drilling define an age-progressive paleolatitude history, indicating that the Emperor Seamount trend was principally formed by the rapid motion (over 40 millimeters per year) of the Hawaiian hotspot plume during Late Cretaceous to early-Tertiary times (81 to 47 million years ago). Evidence for motion of the Hawaiian plume affects models of mantle convection and plate tectonics, changing our understanding of terrestrial dynamics.
Heat flow in the Central Basin of the Indian Ocean and the northern part of the Afanasy Nikitin Rise
Resumo:
Heat flux data obtained during Cruise 20 of R/V Akademik Mstislav Keldysh in the Central Basin of the Indian Ocean and northern part of the Afanasy Nikitin Rise are presented. Thermal conditions on the rise are not associated with an anomalous zone of the large tectonic deformation block north of it. Geothermal data indicate that the Afanasy Nikitin Rise has formed near an ancient spreading axis. Distribution of measured heat flux values indicates an additional source of heat in the Central Basin resulting from dissipative heating of the crust in the two-stage plate tectonics model.
Resumo:
Sediments cored along the southwestern Iberian margin during Integrated Ocean Drilling Program Expedition 339 provide constraints on Mediterranean Outflow Water (MOW) circulation patterns from the Pliocene epoch to the present day. After the Strait of Gibraltar opened (5.33 million years ago), a limited volume of MOW entered the Atlantic. Depositional hiatuses indicate erosion by bottom currents related to higher volumes of MOW circulating into the North Atlantic, beginning in the late Pliocene. The hiatuses coincide with regional tectonic events and changes in global thermohaline circulation (THC). This suggests that MOW influenced Atlantic Meridional Overturning Circulation (AMOC), THC, and climatic shifts by contributing a component of warm, saline water to northern latitudes while in turn being influenced by plate tectonics.
Resumo:
The book is devoted to investigations of benthic fauna and geology of the Southern Atlantic Ocean. These works have been carried out in terms of exploring biological structure of the ocean and are of great importance for development of this fundamental problem. They are based on material collected during Cruise 43 of R/V Akademik Kurchatov in 1985-1986 and Cruise 43 of R/V Dmitry Mendeleev in 1989. Problems of quantitative distribution, group composition and trophic structure of benthos in the Southern Scotia Sea, along the east-west Transatlantic section along 31°30'S, and offshore Namibia in the area of the Benguela upwelling are under consideration in the book. Authors present new data on fauna of several groups of deep-sea bottom animals and their zoogeography. Much attention is paid to analysis of morphological structure of the Scotia Sea floor considered in terms of plate tectonics. Bottom sediments along the Transatlantic section and facial variation of sediments in the area of South Shetland Islands and of the continental margin of Namibia are under consideration.
Resumo:
The monograph is devoted to the main results of research on the Trans Indian Ocean Geotraverse from the Maskarene Basin to the north-western margin of Australia. These results were obtained by Russian specialists and together with Indian specialists during 15 years of cooperation in investigation of geological structure and mineral resources of the Indian Ocean. The monograph includes materials on information support of marine geological and geophysical studies, composition and structure of information resources on the Indian Ocean, bathymetry and geomorphology, structure and geological nature of the magnetic field, gravity field, plate tectonics, crustal structure and sedimentary cover, seismic stratigraphy, perspectives for detecting oil and gas, solid minerals, sediment composition, composition and properties of clay minerals, stratigraphy and sediment age, chemical composition of sediments, composition of and prospects for solid minerals.