997 resultados para plasma channel
Resumo:
通过对飞秒激光在空气中产生的等离子体通道两端外加高压,来研究通道的寿命变化情况。实验得到,当在等离子体通道两端外加高压时(350 kV/m),等离子体通道寿命延长了近3倍。理论模拟和分析结果表明在外加电场条件下,碰撞电离得到增强,吸附作用相对减弱,解离复合系数随着电子平均能量的增加而下降的趋势更为剧烈,这进一步引起了等离子体通道寿命的延长。实验结果与理论分析共同表明了利用外加电场对空气中激光等离子体通道寿命进行延长的可行性。
Resumo:
We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.
Resumo:
We propose to utilize the leading pulse of a petawatt class laser to create a conic plasma channel in the dense plasmas. This plasma channel could serve as a natural cone to guide the main pulse to the cone tip, as behaves similarly to the physical Au cone. We estimate that the leading pulse of a petawatt laser could create a natural cone with cone tip only about 100 mu m away from the edge of compressed core plasma. The natural cone formation should be compatible for a good uniform compression and efficient fast heating of the imploded fuel.
Resumo:
Electric propulsion is now a succeful method for primary propulsion of deep space long duration missions and for geosyncronous satellite attitude control. Closed Drift Thruster, so called Hall Thruster or SPT (Stationary Plasma Thruster), was primarily conceived in USSR (the ancient Soviet Union) and, since then, it has been developed by space agencies, space research institutes and industries in several countries such as France, USA, Israel, Russian Federation and Brazil. In this work we present the main features of the Permanent Magnet Hall Thruster (PMHT) developed at the Plasma Laboratory of the University of Brasilia. The idea of using an array of permanent magnets, instead of an electromagnet, to produce a radial magnetic field inside the plasma channel of the thruster is very significant. It allows the development of a Hall Thruster with power consumption low enough to be used in small and medium size satellites. Description of a new vacuum chamber used to test the second prototype of the PMHT (PHALL II) will be given. PHALL II has an aluminum plasma chamber and is smaller with 15 cm diameter and will contain rare earth magnets. We will show plasma density and temperature space profiles inside and outside the thruster channel. Ion temperature measurements based on Doppler broadening of spectral lines and ion energy measurements are also shown. Based on the measured plasma parameters we constructed an aptitude figure of the PMHT. It contains the specific impulse, total thrust, propellant flow rate and power consumption necessary for orbit raising of satellites. Based on previous studies of geosyncronous satellite orbit positioning we perform numerical simulations of satellite orbit raising from an altitude of 700 km to 36000 km using a PMHT operating in the 100 mN - 500 mN thrust range. In order to perform these calculations integration techniques were used. The main simulation paraters were orbit raising time, fuel mass, total satellite mass, thrust and exaust velocity. We conclude comparing our results with results obtainned with known space missions performed with Hall Thrusters. © 2008 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Fuel-lean combustion and exhaust gas recirculation (EGR) in spark ignition engines improve engine efficiency and reduce emission. However, flame initiation becomes more difficult in lean and dilute fuel-air mixture with traditional spark discharge. This research proposal will first provide an intensive review on topics related to spark ignition including properties of electrical discharge, flame kernel behavior and spark ignition modeling and simulation. Focus will be laid on electrical discharge pattern effect as it is showing prospect in extending ignition limits in SI engines. An experimental setup has been built with an optically accessible constant volume combustion vessel. Multiple imaging techniques as well as spectroscopy will be applied. By varying spark discharge patterns, preliminary test results are available on consequent flame kernel development. In addition to experimental investigation of spark plasma and flame kernel development, spark ignition modeling with detailed description of plasma channel is also proposed for this study.
Resumo:
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Resumo:
Discovery of novel drug targets may lead to improved treatment of trypanosomiasis. We characterize here 2 gene products of Trypanosoma brucei that are essential for the growth of bloodstream form (BSF) parasites, as shown by RNA interference (RNAi)-mediated down-regulation of the individual mRNAs. The primary sequences of the 2 proteins--protein encoded by gene Tb927.1.4450 (TbK1) and protein encoded by gene Tb927.9.4820 (TbK2)--indicate that both belong to the family of putative, Ca(2+)-activated potassium channels. The proteins were expressed in Xenopus laevis oocytes and their functions investigated by use of electrophysiological techniques. Only combined expression of TbK1 and TbK2 results in the formation of sizeable currents, indicating that these proteins probably assemble into a heteromeric ion channel. The current mediated by this channel shows little time and voltage dependence and displays a permeability ratio of K(+)/Na(+) of >20. The known potassium channel blocker barium inhibits this channel with a half-maximal inhibitory concentration (IC50) of 98 ± 15 μM. The membrane potential of trypanosomes was measured with a fluorescent dye. Individual RNAi-mediated down-regulation of TbK1 or TbK2 eliminates a potassium conductance in the plasma membrane of BSF. Thus, this heteromeric potassium channel is involved in the modulation of the plasma membrane potential and represents a novel drug target in T. brucei.
Resumo:
Two water channel homologs were cloned recently from rat kidney, mercurial-insensitive water channel (MIWC) and glycerol intrinsic protein (GLIP). Polyclonal antibodies were raised against synthetic C-terminal peptides and purified by affinity chromatography. MIWC and GLIP antibodies recognized proteins in rat kidney with an apparent molecular mass of 30 and 27 kDa, respectively, and did not cross-react. By immunofluorescence, MIWC and GLIP were expressed together on the basolateral plasma membrane of collecting duct principal cells in kidney. By immunohistochemistry, MIWC and GLIP were expressed on tracheal epithelial cells with greater expression of GLIP on the basal plasma membrane and MIWC on the lateral membrane; only MIWC was expressed in bronchial epithelia. In eye, GLIP was expressed in conjunctival epithelium, whereas MIWC was found in iris, ciliary body, and neural cell layers in retina. MIWC and GLIP colocalized on the basolateral membrane of villus epithelial cells in colon and brain ependymal cells. Expression of MIWC and GLIP was not detected in small intestine, liver, spleen, endothelia, and cells that express water channels CHIP28 or WCH-CD. These studies suggest water/solute transporting roles for MIWC and GLIP in the urinary concentrating mechanism, cerebrospinal fluid absorption, ocular fluid balance, fecal dehydration, and airway humidification. The unexpected membrane colocalization of MIWC and GLIP in several tissues suggests an interaction at the molecular and/or functional levels.
Resumo:
Plasma plumes with exotically segmented channel structure and plasma bullet propagation are produced in atmospheric plasma jets. This is achieved by tailoring interruptions of a continuous DC power supply over the time scales of lifetimes of residual electrons produced by the preceding discharge phase. These phenomena are explained by studying the plasma dynamics using nanosecond-precision imaging. One of the plumes is produced using 2-10μs interruptions in the 8kV DC voltage and features a still bright channel from which a propagating bullet detaches. A shorter interruption of 900ns produces a plume with the additional long conducting dark channel between the jet nozzle and the bright area. The bullet size, formation dynamics, and propagation speed and distance can be effectively controlled. This may lead to micrometer-and nanosecond-precision delivery of quantized plasma bits, warranted for next-generation health, materials, and device technologies.
Resumo:
Controlled interaction of high-power pulsed electromagnetic radiation with plasma-exposed solid surfaces is a major challenge in applications spanning from electron beam accelerators in microwave electronics to pulsed laser ablation-assisted synthesis of nanomaterials. It is shown that the efficiency of such interaction can be potentially improved via an additional channel of wave power dissipation due to nonlinear excitation of two counterpropagating surface waves, resonant excitations of the plasma-solid system.Physics.
Resumo:
Plants are rooted to their growth place; therefore it is important that they react adequately to changes in environmental conditions. Stomatal pores, which are formed of a pair of guard cells in leaf epidermis, regulate plant gas-exchange. Importantly, guard cells protect the plant from desiccation in drought conditions by reducing the aperture of the stomatal pore. They serve also as the first barrier against the major air pollutant ozone, but the behaviour of guard cells during ozone exposure has not been sufficiently addressed. Aperture of the stomatal pore is regulated by the influx and efflux of osmotically active ions via ion channels and transporters across the guard cell membrane, however the molecular identity of guard cell plasma membrane anion channel has remained unknown. In the frame of this study, guard cell behaviour during ozone exposure was studied using the newly constructed Arabidopsis whole-rosette gas-exchange system. Ozone induced a Rapid Transient Decrease (RTD) in stomatal conductance within 10 min from the start of exposure, which was followed by a recovery in the conductance within the next 40 min. The decrease in stomatal conductance was dependent on the applied ozone concentration. Three minutes of ozone exposure was sufficient to induce RTD and further ozone application during the closure-recovery process had no effect on RTD, demonstrating that the whole process is programmed within the first three minutes. To address the molecular components responsible for RTD, the ozone response was measured in 59 different Arabidopsis mutants involved in guard cell signalling. Four of the tested mutants slac1 (originally rcd3), ost1, abi1-1 and abi2-1 lacked RTD completely. As the ozone sensitive mutant slac1 lacked RTD, the next aim of this study was to identify and characterize SLAC1. SLAC1 was shown to be a central regulator in response to all major factors regulating guard cell aperture: CO2, light/darkness transitions, ozone, relative air humidity, ABA, NO, H2O2, and extracellular Ca2+. It encodes the first guard cell plasma membrane slow type anion channel to be identified at the molecular level. Interestingly, the rapid type anion conductance was intact in slac1 mutant plants. For activation, SLAC1 needs to be phosphorylated. Protein kinase OST1 was shown to phosphorylate several amino acids in the N-terminal tail of SLAC1, Ser120 was one of its main targets, which led to SLAC1 activation. The lack of RTD in type 2C protein phosphatase mutants abi1-1 and abi2-1, suggests that these proteins have a regulatory role in ozoneinduced activation of the slow type anion channel.
Resumo:
Laminar-flow non-transferred DC plasma jets were generated by a torch with an inter-electrode insert by which the arc column was limited to a length of about 20 mm. Current–voltage characteristics, thermal efficiency and jet length, a parameter which changes greatly with the generating parameters in contrast with the almost unchangeable jet length of the turbulent plasma, were investigated systematically, by using the similarity theory combined with the corresponding experimental examination. Formulae in non-dimensional forms were derived for predicting the characteristics of the laminar plasma jet generation, within the parameter ranges where no transfer to turbulent flow occurs. Mean arc temperature in the torch channel and mean jet-flow temperature at the torch exit were obtained, and the results indicate that the thermal conductivity feature of the working gas seems to be an important factor affecting thermal efficiency of laminar plasma generation.
Resumo:
本文研究了滑动弧放电过程中电参数的变化,并对滑动弧等离子体中的非平衡度和各参数之间关系进行了讨论。应用了双通道电弧模型 ,对电弧在气流作用下的运动规律进行了数值模拟。模拟的结果有助于分析滑动弧非平衡等离子体的产生机理。 The elelctric parameters change during discharge is studied and the relationship between non-equilibrium degree and parameters is discussed for gliding arc discharge.Using two-channel model, the rules of arc moving due to effect of the airflow is simulated.The numerical simulation results can help analyzing the generation mechanism of gliding arc non-equilibrium plasma.