980 resultados para planting dates
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Estudos sobre a climatologia das precipitações no Estado do Pará são essenciais para o planejamento das atividades agrícolas. A variação da precipitação anual e sazonal no Estado do Pará foi analisada com base em séries históricas de 23 anos (1976-1998) de dados diários de chuva. A análise foi realizada para 31 localidades do Estado do Pará, sendo os resultados representados em mapas com a utilização de técnicas de sistemas de informações geográficas (SIG). A variabilidade da precipitação anual e sazonal foi caracterizada com base no coeficiente de variação e no índice de variabilidade interanual relativo. A variação desses coeficientes para a precipitação anual no Estado do Pará foi de 15 a 30%. As características mensais da estação chuvosa, em termos de início, fim e duração, foram determinadas utilizando-se o critério proposto por KASSAM (1979). A variação entre as datas de plantio precoces e tardias corresponderam aos decêndios identificados pelos dias julianos 309319 e 353363, respectivamente.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
La capacidad de la red de canales en un sistema de riego depende de satisfacer la demanda hídrica máxima de los cultivos. Los métodos para determinar la capacidad del canal requieren de la estimación de la variable agronómica: evapotranspiración de los cultivos. En grandes áreas de riego, con un padrón diversificado de cultivos, diferentes fechas de siembra y varios ciclos agrícolas no existe un procedimiento integrado para estimar esta variable agronómica, lo cual genera incertidumbre al ser requerida en los métodos. En este trabajo se desarrolla una propuesta para estimar dicha variable para grandes zonas de riego. La propuesta inicia con el cálculo de la evapotranspiración de los cultivos por fecha de siembra, y termina con la obtención de una curva general integral para un año agrícola, encontrándose la variable evapotranspiración de una zona de riego (ETzr). Esta metodología se aplicó para el canal principal del módulo de riego Santa Rosa, Distrito de Riego 075, Sinaloa, México en que la ETzr resultó de 4,1 mm d-1. Por los resultados se concluye la veracidad de la propuesta en determinar la evapotranspiración para el cálculo en la capacidad del canal.
Resumo:
Crop irrigation is a major consumer of energy. Only a few countries are self-sufficient in conventional non-renewable energy sources. Fortunately, there are renewable ones, such as wind, which has experienced recent developments in the area of power generation. Wind pumps can play a vital role in irrigation projects in remote farms. A methodology based on daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. For this purpose, several factors were included: three-hourly wind velocity (W3 h, m/s), flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration as a function of crop planting date. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. An example is given illustrating the use of this methodology on tomato crop (Lycopersicon esculentum Mill.) under greenhouse at Ciego de Ávila, Cuba. In this case two different W3 h series (average and low wind year), three different H values and five tomato crop planting dates were considered. The results show that the optimum period of wind-pump driven irrigation is with crop plating in November, recommending a 5 m3 volume tank for cultivated areas around 0.2 ha when using wind pumps operating at 15 m of height elevation.
Resumo:
Esta tesis desarrolla una metodología para comparar la viabilidad económica de distintas tecnologías de suministro energético para el bombeo de agua de riego en invernaderos tanto en España, Cuba o Pakistán (países con diferentes estados de desarrollo). En concreto, se analiza el bombeo directo eólico, el bombeo solar fotovoltaico, el bombeo con generadores diesel, y mediante conexión a la red eléctrica. El análisis tuvo en cuenta los recursos eólicos y solar, la altura de elevación, el tamaño de invernadero, la distancia al punto de conexión a la red, las necesidades de almacenamiento de agua y las fechas de siembra. Las comparaciones se realizaron usando un criterio técnico-económico basado en el coste normalizado de la energía de cada tecnología. En los tres países, el bombeo directo eólico no sería económicamente recomendable, en el caso de existir una conexión a la red. Allí donde no existe conexión a la red, la distancia a la red y los recursos eólico y solar disponibles son los factores clave a tener en cuenta a la hora de decidir entre las diferentes tecnologías. Por otro lado, la altura del bombeo del agua tiene una gran influencia sobre la viabilidad económica del bombeo directo eólico, mucho más que, por ejemplo, en el caso del bombeo solar fotovoltaico. En general, los resultados revelan que los factores críticos a tener en cuenta a la hora de elegir la solución energética óptima son diferentes en cada uno de los países. En el caso de España, la proximidad a los puntos de conexión de la red eléctrica determina que ésta sea la mejor opción. El limitado potencial eólico es el factor limitante en Pakistán. En Cuba, la altura del bombeo, la distancia al punto de conexión de la red eléctrica y el almacenamiento de agua necesario son los factores críticos para determinar la tecnología más apropiada para el bombeo al disponer de buenos recursos solar y eólico. ABSTRACT This thesis develops a methodology for comparing the economic feasibility of wind pump technology, solar photovoltaic pumping, diesel generators, and connection to the electrical grid to provide energy for pumping irrigation water in commercial greenhouses in Spain, Cuba and Pakistan (countries with different developmental backgrounds). The analysis studied the importance of the wind and solar resource, the water elevation, the greenhouse size, the distance to the grid, the pumping elevation, the water storage tank volume requirements, and the planting dates. Comparisons were made in terms of the levelised cost of energy associated with each technology. For all three countries, if a grid connection was already in place, installing wind pumps would be economically unwise. Where no grid connection exists, the distance to the grid and the wind and solar resources available are key factors to be taken into consideration when deciding between options. Finally, the water elevation has a major influence on the economic feasibility of wind pump technology, much more than, for example, on solar photovoltaic pumping technology. The results reveal that, generally, the critical factors to consider when making energy management decisions differ depending between countries. In Spain, the proximity of the electrical grid makes the connection to it the best option. In Pakistan, scarce wind resources are a serious limiting factor. Cuba, however, has good wind and solar resources; water elevation, distance to the grid, and water storage needed are the critical factors when determining the economic feasibility of wind pumping.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Programa de Pós-Graduação em Agronomia, 2016.
Resumo:
In the keynote, major reforestation challenges in Scandinavia will be highlighted. The following countries make up Scandinavia: Iceland, Norway, Sweden, Finland and Denmark. For Iceland, with only a forest cover of 2%, a major reforestation challenge is the deforestation and overgrazing in combination with land degradation and extensive soil erosion. The challenges include the conflicts with livestock farmers. For centuries the commons were used for sheep and horse grazing. However, more and more of farmer grazing land have been fenced up, allowing the regeneration of birch and plantations of other species to increase. With a forest cover of 37% and 69% respectively, for decades a major reforestation challenge in Norway and Sweden has been the risk of seedling damages from the pine weevil. Unprotected seedlings can have a survival rate of less than 25% after being planted. Pine weevils feed on the bark of planted young seedlings at regeneration sites. If the seedling is girdled, it will not survive. In Sweden, and soon in Norway, pesticides have been forbidden. In the keynote, new methods and technology will be presented based on non-chemical protection. In Finland, with a forest cover of 75%, a major reforestation challenge is linked to the forest structure. The structure of Finnish forestry includes many private forests in combination with small regeneration sites. This implies a situation where logistics and methods for lifting and field storage provide a major challenge in order to preserve seedling quality until the planting date. Due to this situation, new logistic systems and technologies are being developed in Finland, including new seedling cultivation programs (including cultivation under Light Emitting Diodes (LEDs)) to match the access of fresh planting stock to different planting dates. In Denmark, with a forest cover of 13%, a major reforestation challenge is the possibility of future plantations based on a wide range of relevant species. For this to become a realistic option, new methods and technology have to be developed in reforestation activities that support this possibility. These methods and technology should make it possible to not be limited to certain species due to problems and restrictions during field establishment. This due to the prospect of establishing stable, healthy, and productive stands of various forest species that can be adapted to future climate change.
Resumo:
Surveys were conducted in the Philippines from 1995 to 1997 to examine relationships between production environment variables (agroecosystem, synchrony of planting, and varieties planted) and the occurrence of rice tungro disease epidemics using correspondence analyses. The sites covered were Isabela, Nueva Ecija, North Cotabato, and Bohol provinces as well as Bicol region. Tungro disease incidence in farmers’ fields was assessed visually based on typical symptoms. In addition, leaf samples were collected from each field and indexed serologically by enzyme-linked immunosorbent assay for the presence of Rice tungro bacilliform (RTBV) and Rice tungro spherical (RTSV) viruses. Thus, relationships between the production environment variables and four disease variables — visual incidence and double RTBV and RTSV, single RTSV, and single RTBV infections — were examined. A higher association was observed between site and varieties planted as well as site and synchrony of planting than between site and agroecosystem or site and disease variables (visual incidence, double RTBV and RTSV and single RTSV infections). Disease variables depended on both varieties planted and synchrony of planting and correspondence analysis revealed that the low disease incidence in Nueva Ecija was associated with synchronous planting while the high disease incidence in Isabela was associated with the planting of susceptible varieties and asynchronous planting. Such findings suggest that the relationship between the last two factors at a given site is critical to predicting tungro occurrence. Moreover, correspondence analysis of the relationship among disease variables revealed that tungro incidence is associated with not only double RTBV and RTSV infections but also single RTSV infections. Implications of these results on tungro epidemiology and management are discussed.
Resumo:
Projected increases in atmospheric carbon dioxide concentration ([CO2]) and air temperature associated with future climate change are expected to affect crop development, crop yield, and, consequently, global food supplies. They are also likely to change agricultural production practices, especially those related to agricultural water management and sowing date. The magnitude of these changes and their implications to local production systems are mostly unknown. The objectives of this study were to: (i) simulate the effect of projected climate change on spring wheat (Triticum aestivum L. cv. Lang) yield and water use for the subtropical environment of the Darling Downs, Queensland, Australia; and (ii) investigate the impact of changing sowing date, as an adaptation strategy to future climate change scenarios, on wheat yield and water use. The multimodel climate projections from the IPCC Coupled Model Intercomparison Project (CMIP3) for the period 2030–2070 were used in this study. Climate scenarios included combinations of four changes in air temperature (08C, 18C, 28C, and 38C), three [CO2] levels (380 ppm, 500 ppm, and 600 ppm), and three changes in rainfall (–30%, 0%, and +20%), which were superimposed on observed station data. Crop management scenarios included a combination of six sowing dates (1 May, 10 May, 20 May, 1 June, 10 June, and 20 June) and three irrigation regimes (no irrigation (NI), deficit irrigation (DI), and full irrigation (FI)). Simulations were performed with the model DSSAT4.5, using 50 years of daily weather data.Wefound that: (1) grain yield and water-use efficiency (yield/evapotranspiration) increased linearly with [CO2]; (2) increases in [CO2] had minimal impact on evapotranspiration; (3) yield increased with increasing temperature for the irrigated scenarios (DI and FI), but decreased for the NI scenario; (4) yield increased with earlier sowing dates; and (5) changes in rainfall had a small impact on yield for DI and FI, but a high impact for the NI scenario.