941 resultados para plant-soil system
Resumo:
The podzol-ferralsol soil systems, which cover great areas of Amazonia and other equatorial regions, are frequently associated with kaolin deposits and store and export large amounts of carbon. Although natural organic matter (NOM) plays a key role in their dynamics, little is known about their biogeochemistry. In order to assess the specific role of dissolved organic matter (DOM) on NOM storage in deep horizons and to determine possible relationships between kaolin formation and DOM properties, we studied the groundwater composition of a typical podzol-ferralsol soil catena from the Alto Rio Negro region, Brazil. Groundwater was sampled using tension-free lysimeters placed according to soil morphology. DOC, E-H, p(H), and dissolved Si, Al3+, Fe2+, and Fe3+ were analyzed for all samples and values are given in a database. Quantification of other dissolved ions, small carboxylic acids and SUVA(254) index and acid-base microtitration was achieved on selected samples. Part of the DOM produced by the hydromorphic podzols is directly exported to the blackwater streams; another part percolates at greater depth, and more than 90% of it adsorbs in the Bh-Bhs horizons, allowing carbon storage at depth. Humic substances are preferentially adsorbed with regard to small carboxylic compounds. With regard to kaolin genesis, kaolinite precipitation is favored by Al release from NOM mineralization within the Bh-Bhs and kaolin bleaching is ensured by iron reduction due to acidity and relatively low E-H. Fe2+ mobility can be related to small E-H variations and enhanced by the significant concentration of small carboxylic acids. The long-term result of these processes is the thickening of the kaolin, and it can be inferred that kaolin is likely to occur where active, giant podzols are close to a slope gradient sufficient enough to lower the deep water table.
Resumo:
A clear statement in these lines textually cited (Byers et al., 1938) defines the framework of this special issue: “True soil is the product of the action of climate and living organism upon the parent material, as conditioned by the local relief. The length of time during which these forces are operative is of great importance in determining the character of the ultimate product. Drainage conditions are also important and are controlled by local relief, by the nature of the parent material or underlying rock strata, or by the amount of precipitation in relation to rate of percolation and runoff water. There are, therefore, five principal factors of soil formation: Parent material, climate, biological activity, relief and time. These soil forming factors are interdependent, each modifying the effectiveness of the others.” Due to these various processes associated to its formation and genesis soil dynamics reveals high complexity that creates several levels of structure using this term in a broad sense
Resumo:
The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species.
Resumo:
At the present time there is a high pressure toward the improvement of all the production processes. Those improvements can be sensed in several directions in particular those that involve energy efficiency. The definition of tight energy efficiency improvement policies is transversal to several operational areas ranging from industry to public services. As can be expected, agricultural processes are not immune to this tendency. This statement takes more severe contours when dealing with indoor productions where it is required to artificially control the climate inside the building or a partial growing zone. Regarding the latter, this paper presents an innovative system that improves energy efficiency of a trees growing platform. This new system requires the control of both a water pump and a gas heating system based on information provided by an array of sensors. In order to do this, a multi-input, multi-output regulator was implemented by means of a Fuzzy logic control strategy. Presented results show that it is possible to simultaneously keep track of the desired growing temperature set-point while maintaining actuators stress within an acceptable range.
Resumo:
Issued October 20, 1981.
Resumo:
Cover title.
Resumo:
Cover title.
Resumo:
"Issued December 1948."
Resumo:
At the present there is a high pressure toward the improvement of all production processes. Those improvements can target distinct factors along the production chain. In particular, and due to recent tight energy efficiency policies, those that involve energy efficiency. As can be expected, agricultural processes are not immune to this tendency. Even more when dealing with indoor productions. In this context, this work presents an innovative system that aims to improve the energy efficiency of a trees growing platform. This improvement in energy consumption is accomplished by replacing an electric heating system by one based on thermodynamic panels. The assessment of the heating fluid caudal and its temperature was experimentally obtained by means of a custom made scaled prototype whose actuators status are commanded by a Fuzzy-based controller. The obtained results suggest that the change in the heating paradigm will lead to overall savings that can easily reach 60% on the energy bill.
Resumo:
养分回收是植物衰老时,养分从衰老组织向活的组织体转移的一种过程。该过程延长了养分在植物体内的滞留时间,提高了植物保持养分的能力,因此是植物适应养分贫瘠生境的策略之一。全球气候变化,包括降水格局改变和氮(N)沉降增加,改变了生态系统正常的生物地球化学循环,因此可能会对植物的养分回收特性产生影响。研究不同N、磷(P)、水梯度上,植物物种养分回收特性的响应格局,对于预测N沉降增加和降水格局改变对物种养分利用策略的潜在影响,具有一定的理论与实践意义。本研究以中国科学院植物研究所多伦恢复生态学实验站长期施N肥实验(0,1,2,4,8,16,32,64 g N m-2 yr-1等8个水平)为研究平台研究了克氏针茅(Stipa krylovii)群落中优势植物养分回收随N素添加梯度的变化,同时结合三个盆栽控制实验(施N肥实验:0,0.5,1,2,4,8,16,32,64,128 g N m-2等10个水平;施P肥实验:梯度同施N肥实验;控水实验:3600,4000,4500,5143,6000,7200,9000,12000,18000,36000 mL pot-1等10个水平),主要探讨了羊草(Leymus chinensis)养分回收效率(从衰老组织中回收转移的养分百分数,RE)和养分回收度(以枯叶中养分浓度衡量,RP)以及其它叶片养分特性(绿叶养分浓度和比叶面积SLA)对环境因子改变的响应格局。同时,我们还调查了枯叶C:N比和C:P比等参数,研究环境因子改变对凋落物分解的影响。 1)连续4年施N肥显著降低了五个物种叶片N素回收度(NRP),对P素回收度(PRP)的影响在各物种间差异较大,但低N提高了多数物种的PRP;物种间,冷蒿(Artemisia frigida)RP(枯叶N和P浓度分别为14.3±2.0 mg g-1和0.68±0.09 mg g-1)最低,砂韭(Allium bidentatum)(N:5.2±0.2 mg g-1,P:0.12±0.01 mg g-1)最高。沿施N梯度,N素回收效率(NRE)的变化趋势在物种间差异较小但在方法间(叶干重水平,叶面积水平和单株水平)差异较大,而P素回收效率(PRE)的变化在物种间和方法间差别都较大。叶干重水平和叶面积水平上,NRE在四个物种中表现出显著降低的趋势,PRE只在糙隐子草(Cleistogenes squarrosa)和星毛委陵菜(Potentilla acaulis)中显著降低,其它三个物种变化不显著。单株水平上,所有物种NRE(除了克氏针茅)和PRE均与施N量梯度无显著性关系。物种间,砂韭的RE最高(>80.0%),冷蒿和星毛委陵菜最低(<60.0%)。方法间,叶片水平上的RE均高于单株水平上。沿施N肥梯度,两个禾本科物种SLA无显著变化规律,而其它三个物种SLA表现出先增加后变化不大的趋势。物种间,最高和最低的SLA分别表现在冷蒿和克氏针茅。沿施N肥梯度,五个物种C:N比呈先显著降低后缓慢降低的趋势。物种间,最大和最小的C:N比分别出现在砂韭和冷蒿。 2)盆栽施N肥实验中,一定范围内,施N肥显著提高了羊草地上地下生物量、SLA和绿叶N浓度,显著降低了C:N比、NRP、NRE和PRE,但对绿叶P浓度、叶片PRP和C:P比无明显影响。平均枯叶N浓度和枯叶P浓度分别为16.2 mg g-1和1.01 mg g-1,平均NRE和PRE分别为46.1﹪和58.1﹪。10月时,地下生物量和养分积累均高于地上部分。 3)盆栽施P肥实验中,一定范围内,施P肥显著地提高了羊草地上地下生物量、SLA、绿叶N浓度和绿叶P浓度,显著降低了C:N比、C:P比、NRP、PRP和PRE,但对NRE无显著影响。平均枯叶N浓度和枯叶P浓度分别为9.9 mg g-1和7.43 mg g-1,平均NRE和PRE分别为58.2﹪,平均PRE为56.1﹪。10月时地下部分生物量和N库积累均高于地上部分,而P库在两个部分间差别不大。 4)盆栽控水实验中,一定范围内,供水量增加显著增加了羊草地上地下生物量、SLA、NRP、PRP、PRE、C:N比和C:P比,显著降低了绿叶N浓度,但对绿叶P浓度和NRE无显著性影响。平均枯叶N浓度和枯叶P浓度分别为10.4 mg g-1和0.32 mg g-1,平均NRE和PRE分别为54.4﹪和76.8﹪。10月时,地下部分生物量和养分积累均高于地上部分。 以上结果表明,N、P和水分因子的改变影响了植物生物量和养分分配、叶片养分特性、养分回收能力以及枯叶分解质量等,且不同梯度影响程度也不同。因此,未来全球变化包括N沉降增加和降水格局改变可能影响植物养分利用策略和凋落物分解特性,进而可能对植被-土壤系统养分循环产生影响。
Resumo:
草地生态系统中,放牧对调节物质流动和营养循环起着关键的作用。内蒙古地区已有上千年的游牧历史,放牧是该地区重要的草地利用方式之一。然而,近50年来,由于人口的剧增以及对草原的不合理利用与管理,使得内蒙古草原发生了严重的退化与沙漠化。理解放牧对氮循环的定量影响,对我们更合理地利用草地、防治生态系统的进一步退化以及探求最佳恢复途径都具有重要的意义。中国科学院内蒙古草原生态系统定位站精准设置的5种放牧强度处理(0.00, 1.33, 2.67, 4.00, 5.33 羊/公顷)为我们的研究提供了理想的平台。2005、2006年生长季期间,在经过16年不同放牧强度处理的一个典型草原样地上,我们测定了氮素输入(氮沉降、生物固氮)、转化(净氮矿化)、输出(反硝化及氨气挥发)速率等N循环的重要参量。同时,测定了微生物生物量碳、氮(Cmic,Nmic)及微生物呼吸(Rmic),研究了微生物在氮循环中的作用。另外,还测定了植物、土壤、固氮体中的15N自然丰度值,探讨了其对不同放牧强度的响应格局与机理。 结果表明,干湿混合沉降物全氮浓度最高达11.53 mg N l–1,沉降量最高为1.77 kg N ha–1m–1。月均氮沉降量与浓度正相关,它们与降水量均关系密切,前者更密切。结皮面积所占比例很小,不超过8%。结皮含氮量为1.01-1.43 g N kg–1,受放牧的影响不显著,但随放牧强度的增加有降低的趋势。土壤结皮能固氮,但固氮量不超过土壤氮含量的1倍。地耳的固氮量为结皮的10-20倍,故是主要的固氮体。尽管地耳含氮量受放牧影响不显著,但放牧是不放牧条件下地耳氮含量的1.58倍。 土壤NH4+-N浓度随季节变化范围为1.71-9.45 µg N g–1,它们在各放牧处理之间的差异不显著。土壤NO3–-N浓度变幅为0.27-11.21 µg N g–1。总无机氮浓度在不放牧条件下的变幅为2.69-14.57 µg N g–1,占总氮的0.49-2.6%;放牧条件下的变幅为2.49-8.66 µg N g–1,占总氮的0.35-1.21%。总无机氮浓度随季节和放牧强度的变化趋势与硝态氮相似,表现为2005年夏季期间有逐渐增加的趋势,而在2006年整个生长季期间有逐渐降低的趋势。不放牧比放牧条件下含氮量高,但在4个放牧处理之间的差异不显著。净氮矿化速率的变幅为–0.61-0.27 µg N g–1d–1,峰值通常出现在7月。净氮矿化速率在各处理间没有一致性差异,但中牧(2.67、4.00 羊/公顷)通常比重牧(5.33 羊/公顷)下的值高。净氮硝化速率通常很低,波动在–0.32-0.16 µg N g–1之间,2005年夏季及2006年春秋季的值相对较高。净氮硝化速率在各放牧处理之间差异不显著,但重牧条件下的值通常最低。累积净氮转化量在年际间差异大,2005年总体上遵循正态分布模式,而2006年随着放牧强度的增加有直线下降的趋势,2006年比2005年的累积量高。土壤温度和湿度比放牧强度对净氮矿化的影响更加显著。放牧强度通过调节这两个土壤因子对氮动态而产生间接影响。 反硝化和N2O的释放速率低,前者变幅为0.33-6.21µg N kg–1 d–1,后者为0.42-11.28 µg N kg–1 d–1。释放量夏季较强,春秋较弱。放牧对反硝化释放影响不显著,只在2005年对N2O释放影响显著。尽管如此,反硝化和N2O释放速率整体表现出在不放牧比放牧条件下高的趋势,且比最高放牧强度5.33 羊/公顷下的反硝化速率显著高。然而,它们在4个放牧处理之间的差异始终不显著。累积反硝化和N2O释放存在年际变化,2006年的值显著高。它们随着放牧强度的递增有逐渐降低的趋势,这在2006年表现得尤为明显,这种结果主要归因于土壤总氮量在长期放牧条件下随放牧压力的增加而逐渐降低。 氨气挥发速率变幅为0.88-3.52 g N ha–1d–1,高峰值出现在5月,2005比2006年同期的速率大。两年间放牧强度对氨气挥发的影响都较弱,2005年影响更弱。不放牧条件下的氨气挥发量通常最低,这在生长季的前期表现得更为明显,中牧及重牧条件下通常最高。放牧能影响氨气挥发与氨态氮,硝态氮及总无机氮浓度之间的关系,即不放牧条件下相关性显著,而放牧条件下相关性不显著。年际间氨气挥发速率与无机氮浓度之间的关系趋势相反,2005年负相关,2006年正相关。在水分充足的2006年,所有处理条件下氨气挥发与土壤水分及温度之间显著相关,但在单独每个放牧处理下,相关性不显著。 Cmic变幅大,为13.97-350.45 μg C g–1,占土壤总有机碳的1.58-8.35%。最高和最低值分别出现在夏季和春季。它们在各处理间差异不显著,不放牧下的值相对偏高。Cmic与土壤有机C和全N、前期的立枯、凋落量及含N量、优势种前期的地上生物量、根系生物量、土壤温度以及水分之间关系密切。氮素状态如氨态氮、总无机氮含量、反硝化以及N2O释放速率,氨气挥发速率与Cmic之间关系密切。Nmic占土壤全氮的0.41-2.74%,不受季节和放牧强度的显著影响。Nmic与可溶性N,表土层根系全N,立枯有机C,地上生物量之间关系密切。氮循环过程中氨气挥发速率受Nmic的影响。Rmic随季节而变化,通常5月份值最高。Rmic随着放牧强度的增加有稍降低的趋势。Rmic与土壤可溶性C、有机C,不同土层根系有机C,凋落物、立枯量及其C、N含量、全N,地上生物量,优势种前期的生物量,土壤温度之间关系密切。土壤氮循环动态如氨态氮、硝态氮、总无机氮浓度及反硝化速率与Rmic之间关系密切。 土壤、植物、地耳、生物结皮的δ15N值与放牧强度之间相关关系不显著。然而,放牧有增加表层土和植物的δ15N值而降低表土、地耳、结皮的δ15N值的趋势。表层土δ15N值与前一年生长季末期硝态氮及总无机氮浓度,反硝化速率及累积氨气挥发之间密切相关。 土壤碳含量的变幅为10.44-17.19 g C kg–1,全氮量的变幅为0.54-0.82 g N kg–1。长期的高强度放牧降低了土壤碳、氮储量。根系碳、氮含量分别为土壤碳、氮含量的40-50和10倍。立枯和凋落物有机碳含量变幅为446.94-507.01 g C kg–1,与放牧强度之间关系不密切;氮含量变幅为4.58-7.18 g N kg–1,与放牧强度之间显著负相关。优势种木地肤、冷蒿的含碳量与放牧强度之间相关不显著,但含氮量与之显著相关。 综述以上结果,不同放牧强度对内蒙草地生态系统氮循环中不同过程产生影响的程度各不相同,这种影响主要是通过它与土壤环境因子如温度、水分的联合作用而间接产生。
Resumo:
本研究针对川西北高山草甸缺乏科学管理,过度放牧导致草场退化,并由此引发的一系列生态环境问题,选取红原县瓦切乡1996 年草地承包后形成的四个放牧强度草场,即不放牧、轻度(1.2 头牦牛hm-1)、中度(2.0 头牦牛hm-1)和重度放牧(2.9 头牦牛hm-1),作为研究对象,研究了不同放牧强度对草地植物-土壤系统中碳、氮这两个最基本物质的分布格局和循环过程的影响,并探讨了放牧干扰下高山草甸生态系统的管理。 1.放牧对草地植物群落物种组成,尤其是优势种,产生了明显的影响。不放牧、轻度、中度和重度放牧草地群落物种数分别为22,23,26,20 种,群落盖度分别是不放牧96.2%>中度93.6%>轻度89.7%>重度73.6%。随放牧强度的增加, 原植物群落中的优势种垂穗鹅冠草( Roegneria nutans )、发草(Deschampsia caespitosa)和垂穗披碱草(Elymus nutans)等禾草逐渐被莎草科的川嵩草(Kobresia setchwanensis)和高山嵩草(Kobresia pygmaea)所取代成为优势种。同时,随放牧强度的增加,高原毛茛(Ranunculus brotherusii)、狼毒(Stellera chamaejasme)、鹅绒委陵菜(Potentilla anserina)和车前(Plantagodepressa)等杂类草的数量也随之增加。 2.生长季6~9 月份,草地植物地上和地下生物量(0~30cm)都是从6 月份开始增长,8 月份达到最高值,9 月份开始下降。每个月份,通常地上生物量以不放牧为最高,重度放牧总是显著小于不放牧;地下生物量随放牧强度的增加表现为增加的趋势,通常重度和中度放牧显著高于不放牧和轻度放牧草地。不放牧、轻度、中度和重度放牧草地6~9 月份4 个月的植物总生物量平均值分别是1543、1622、2295 和2449 g m-2,但随放牧强度的增加越来越来多的生物量被分配到了地下部分,地下生物量占总生物量比例的大小顺序分别是重度88%>中度82%>轻度76%>不放牧69%。生物量这种变化主要是由于放牧使得群落优势种发生改变而引起的,其分配比例的变化体现了草地植物对放牧干扰的适应策略。 3.植物碳氮贮量的季节变化类似与生物量的变化。每个月份,不同放牧强度间植物地上碳氮的贮量有所不同,一般重度放牧会显著减少植物地上碳氮贮量。植物根系(0~30cm)碳氮贮量随放牧强度的增加表现为增加的趋势,通常重度和中度放牧显著高于不放牧和轻度放牧草地。不放牧、轻度、中度和重度放牧草地6~9 月份4 个月的植物总碳平均值分别是547、586、847 和909 g m-2,根系碳贮量占植物总碳的比例大小顺序分别是重度88%>中度82%>轻度76%>不放牧69%;放牧、轻度、中度和重度放牧草地6~9 月份4 个月的植物总氮平均值分别是17、17、23 和26 g m-2,根系氮贮量占植物总氮的比例大小顺序分别是重度79%>轻度71%>中度70%>不放牧65%。 4. 土壤有机碳贮量(0~30cm)的季节变化表现为7 月份略有下降,8 月开始增加,9 月份达到的最大值。土壤氮贮量的季节变化表现为随季节的推移逐渐增加的趋势。增加的放牧强度不同程度的增加土壤有机碳氮的贮量。不放牧、轻度、中度和重度放牧6~9 月份4 个月的土壤有机碳贮量的平均值分别是9.72、10.36、10.62 和11.74 kg m-2,土壤氮贮量分别为1.45、1.56、1.66 和1.83 kg m-2。土壤中有机碳(氮)的贮量都占到了植物-土壤系统有机碳(氮)的90%以上,但不同放牧强度之间的差异不明显。 5. 土壤氮的总硝化和反硝化,温室气体N2O 和CO2 的释放率的季节变化表现为从6 月份开始增加,7 月份达到最大值,8 月份开始下降,9 月份降为最小值。增加的放牧强度趋向于增加土壤氮的总硝化和反硝化作用,温室气体N2O和CO2 的释放率,通常情况下,中度放牧和重度放牧显著地加强了这些过程。 6.垂穗鹅冠草(Roegneria nutans)和川嵩草(Kobresia setchwanensis)凋落物在不同放牧强度下经过1 年的分解,两种凋落物的失重率及其碳氮的损失率3都随放牧增加表现为增加的趋势。在同一放牧强度下,川嵩草凋落物的失重率和碳氮的损失率都高于垂穗鹅冠草凋落物。 7. 尽管重度放牧显著增加了土壤碳氮的贮量,但同时也显著降低了植被群落盖度,降低了植物地上生物量,因此,久而久之会减少植物向土壤中的碳氮归还率;与不放牧和轻度放牧相比,重度放牧又显著增加了土壤CO2 和NO2 的排放量,这是草地生态系统碳氮损失的重要途径。由此可见,对于这些地处青藏高原的非常脆弱的高山草甸生态系统,长期重度放牧不仅导致植物生产力降低,而且将导致草地生态系统退化,甚至造成土壤中碳氮含量减少。 Long-term overgrazing has resulted in considerable deterioration in alpine meadowof the northwest Sichan Province. In order to explore management strategies for thesustainability of these alpine meadows, we selected four grasslands with differentgrazing intensity (no grazing-NG: 0, light grazing-LG: 1.2, moderate grazing-MG: 2.0,and heavy grazing-HG: 2.9 yaks ha-1) to evaluate carbon, nitrogen pools and cyclingprocesses within the plant-soil system in Waqie Village, Hongyuan County, Sichuan Province. 1. Grazing obviously changed the plant species composition, especially ondominant plant species. Total number of species is 22, 23, 26, and 20 for NG, LG, MGand HG, respectively. Vegetation coverage under different grazing intensity ranked inthe order of 96.2% for HG>93.6% for MG>89.7% for LG>73.6% for NG. Thedominator of HG community shifted from grasses-Roegneria nutans andDeschampsia caespitosa dominated in the NG and LG sites into sedges-Kobresiapygmaea and K. setchwanensis. At the same time, with the increase of grazingintensity, the numbers of forbs, such as Ranunculus brotherusii, Stellera chamaejasme,Potentilla anserine and Plantago depressa, increased with grazing intensity. 2. Over the growing season, aboveground and belowground biomass showed a 5single peak pattern with the highest biomass in August. For each month, abovegroundbiomass usually was the highest in the NG site and lowest in the HG site.Belowground biomass showed a trend of increase as grazing intensity increased and itwas significantly higher in the HG and MG site than in the NG and LG sites. Totalplant biomass averaged over the growing season is 1543, 1622, 2295 and 2449 g m-2for NG, LG, MG and HG, respectively. The proportion of biomass to total plantbiomass for NG, LG, MG and HG is 88%, 82%, 76% and 69%, respectively. Higherallocation ratio for is an adaptive response of plant to grazing. 3. Carbon and nitrogen storage in plant components followed the similar seasonalpatterns as their biomass under different grazing intensities. Generally, heavy grazingsignificantly decreases aboveground biomass carbon and nitrogen compared to nograzing. Carbon and nitrogen storage in root tended to increase as grazing increasedand they are significantly higher in the HG and MG sites compared to the LG and NGsite. Total Carbon storage in plant system averaged over the growing season is 547,586, 847 and 909 g m-2 for NG, LG, MG and HG, respectively, while 17, 17, 23 and 26g m-2 for nitrogen. The proportion of carbon storage in root to total plant carbon forNG, LG, MG and HG is 88%, 82%, 76%, 69%, respectively, while 65%, 71%, 70%and 79% for nitrogen. 4. Carbon storage in soil (0-30cm) decreased slightly in July, then increased inAugust and peaked in September. Nitrogen storage in soil tended to increase withseason and grazing intensity. Total Carbon storage in soil averaged over the growingseason is 9.72, 10.36, 10.62 and11.74 kg m-2 for NG, LG, MG and HG, respectively,while 1.45, 1.56, 1.66 and 1.83 for nitrogen. The proportion of carbon (nitrogen)storage in soil to plant-soil system carbon (nitrogen) storage for NG, LG, MG and HGis more than 90%, which is not markedly different among different grazing intensities. 5. Gross nitrification, denitrification, CO2 and N2O flux rates in soil increasedfrom June to July and then declined until September, all of which tended to increasewith the increase of grazing intensity. Generally, heavy and moderate grazing intensitysignificantly enhanced these process compared to no and light grazing intensity. 6. After decomposing in situ for a year, relative weight, carbon and nitrogen loss in the litter of Roegneria nutans and Kobresia setchwanensis tended to increase asgrazing intensity increased. Under the same grazing intensity, relative weight, carbonand nitrogen loss in the litter of Kobresia setchwanensis were higher than these in thelitter of Roegneria nutans. 7. Although heavy grazing intensity resulted in higher levels of carbon andnitrogen in plant and soil, it decreased vegetation coverage and aboveground biomass,which are undesirable for livestock production and sustainable grassland development.What is more, heavy grazing could also introduce potential carbon and nitrogen lossvia increasing CO2 and N2O emission into the atmosphere. Grazing at moderateintensity resulted in a plant community dominated by forage grasses with highaboveground biomass productivity and N content. The alpine meadow ecosystems inTibetan Plateau are very fragile and evolve under increasing grazing intensity by largeherbivores; therefore, deterioration of the plant-soil system, and possible declines insoil C and N, are potential without proper management in the future.
Resumo:
植物根际沉积是一种重要的植物与土壤交换的界面过程,在土壤碳周转方面具有重要的作用;根际碳的沉积也是联系植物、土壤及微生物的桥梁.本文就近年来关于根际沉积中碳平衡、碳循环等相关研究,阐述了根际碳沉积的机制,探讨了相关试验中存在的问题,以及不同植物品种、种类和生育期根际沉积的差异和根际沉积物与土壤呼吸的关系,指出了根际沉积在植物-土壤体系中碳循环的重要作用.在此基础上,提出了未来的研究领域及方向.
Resumo:
A better understanding of effects after digestate application on plant community, soil microbial community as well as nutrient and carbon dynamics is crucial for a sustainable grassland management and the prevention of species and functional diversity loss. The specific research objectives of the thesis were: (i) to investigate effects after digestate application on grass species and soil microbial community, especially focussing on nitrogen dynamic in the plant-soil system and to examine the suitability of the digestate from the “integrated generation of solid fuel and biogas from biomass” (IFBB) system as fertilizer (Chapter 3). (ii) to investigate the relationship between plant community and functionality of soil microbial community of extensively managed meadows, taking into account temporal variations during the vegetation period and abiotic soil conditions (Chapter 4). (iii) to investigate the suitability of IFBB-concept implementation as grassland conservation measure for meadows and possible associated effects of IFBB digestate application on plant and soil microbial community as well as soil microbial substrate utilization and catabolic evenness (Chapter 5). Taken together the results indicate that the digestate generated during the IFBB process stands out from digestates of conventional whole crop digestion on the basis of higher nitrogen use efficiency and that it is useful for increasing harvestable biomass and the nitrogen content of the biomass, especially of L. perenne, which is a common species of intensively used grasslands. Further, a medium application rate of IFBB digestate (50% of nitrogen removed with harvested biomass, corresponding to 30 50 kg N ha-1 a-1) may be a possibility for conservation management of different meadows without changing the functional above- and belowground characteristic of the grasslands, thereby offering an ecologically worthwhile alternative to mulching. Overall, the soil microbial biomass and catabolic performance under planted soil was marginally affected by digestate application but rather by soil properties and partly by grassland species and legume occurrence. The investigated extensively managed meadows revealed a high soil catabolic evenness, which was resilient to medium IFBB application rate after a three-year period of application.