893 resultados para physical phenomena simulation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

An overview of dynamic self-organization phenomena in complex ionized gas systems, associated physical phenomena, and industrial applications is presented. The most recent experimental, theoretical, and modeling efforts to understand the growth mechanisms and dynamics of nano- and micron-sized particles, as well as the unique properties of the plasma-particle systems (colloidal, or complex plasmas) and the associated physical phenomena are reviewed and the major technological applications of micro- and nanoparticles are discussed. Until recently, such particles were considered mostly as a potential hazard for the microelectronic manufacturing and significant efforts were applied to remove them from the processing volume or suppress the gas-phase coagulation. Nowadays, fine clusters and particulates find numerous challenging applications in fundamental science as well as in nanotechnology and other leading high-tech industries.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a motion control system for tracking of attitude and speed of an underactuated slender-hull unmanned underwater vehicle. The feedback control strategy is developed using the Port-Hamiltonian theory. By shaping of the target dynamics (desired dynamic response in closed loop) with particular attention to the target mass matrix, the influence of the unactuated dynamics on the controlled system is suppressed. This results in achievable dynamics independent of stable uncontrolled states. Throughout the design, the insight of the physical phenomena involved is used to propose the desired target dynamics. Integral action is added to the system for robustness and to reject steady disturbances. This is achieved via a change of coordinates that result in input-to-state stable (ISS) target dynamics. As a final step in the design, an anti-windup scheme is implemented to account for limited actuator capacity, namely saturation. The performance of the design is demonstrated through simulation with a high-fidelity model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An experimental setup using radiative heating has been used to understand the thermo-physical phenomena and chemical transformations inside acoustically levitated cerium nitrate precursor droplets. In this transformation process, through infrared thermography and high speed imaging, events such as vaporization, precipitation and chemical reaction have been recorded at high temporal resolution, leading to nanoceria formation with a porous morphology. The cerium nitrate droplet undergoes phase and shape changes throughout the vaporization process. Four distinct stages were delineated during the entire vaporization process namely pure evaporation, evaporation with precipitate formation, chemical reaction with phase change and formation of final porous precipitate. The composition was examined using scanning and transmission electron microscopy that revealed nanostructures and confirmed highly porous morphology with trapped gas pockets. Transmission electron microscopy (TEM) and high speed imaging of the final precipitate revealed the presence of trapped gases in the form of bubbles. TEM also showed the presence of nanoceria crystalline structures at 70 degrees C. The current study also looked into the effect of different heating powers on the process. At higher power, each phase is sustained for smaller duration and higher maximum temperature. In addition, the porosity of the final precipitate increased with power. A non-dimensional time scale is proposed to correlate the effect of laser intensity and vaporization rate of the solvent (water). The effect of acoustic levitation was also studied. Due to acoustic streaming, the solute selectively gets transported to the bottom portion of the droplet due to strong circulation, providing it rigidity and allows it become bowl shaped. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The infrared spectrum of the matrix-isolated species of thioacetamide has been simulated using the extended molecular mechanics method. The equilibrium structure, vibrational frequencies, dipole moment and infrared absorption intensities of thioacetamide have been calculated in good agreement with the experiment. The vibrational frequencies and infrared absorption intensities for the isotopic molecules (CH2CSNH2)-C-13, (CH3CSNH2)-N-15 and (CH2CSND2)-C-13 have also been calculated consistent with the experiment. The infrared spectra of the matrix isolated species of N- and C- deuterated isotopomers of thioacetamide, CH3CSND2 and CD3CSNH2 have also been simulated in satisfactory agreement with the experimental spectra.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The infrared spectra of the matrix isolated species of N-methylformamide (NMF) and N-methylacetamide (NMA) and their N-deuterated molecules have been simulated by the extended molecular mechanics method using an empirical force field which includes charges and charge fluxes as coulombic potential parameters. The structural parameters and dipole. moments of NMF and NMA have. also been computed in satisfactory agreement with the experiment. Good agreement between experimental and calculated vibrational frequencies and infrared absorption band intensities for NMF and NMA and their deuterated molecules has been obtained. The vibrational assignments of NMF and NMA are-discussed taking also into account the infrared absorption intensities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Czochralski (Cz) technique, which is used for growing single crystals, has dominated the production of single crystals for electronic applications. The Cz growth process involves multiple phases, moving interface and three-dimensional behavior. Much has been done to study these phenomena by means of numerical methods as well as experimental observations. A three-dimensional curvilinear finite volume based algorithm has been developed to model the Cz process. A body-fitted transformation based approach is adopted in conjunction with a multizone adaptive grid generation (MAGG) technique to accurately handle the three-dimensional problems of phase-change in irregular geometries with free and moving surfaces. The multizone adaptive model is used to perform a three-dimensional simulation of the Cz growth of silicon single crystals.Since the phase change interface are irregular in shape and they move in response to the solution, accurate treatment of these interfaces is important from numerical accuracy point of view. The multizone adaptive grid generation (MAGG) is the appropriate scheme for this purpose. Another challenge encountered is the moving and periodic boundary conditions, which is essential to the numerical solution of the governing equations. Special treatments are implemented to impose the periodic boundary condition in a particular direction and to determine the internal boundary position and shape varying with the combination of ambient physicochemical transport process and interfacial dynamics. As indicated above that the applications and processes characterized by multi-phase, moving interfaces and irregular shape render the associated physical phenomena three-dimensional and unsteady. Therefore a generalized 3D model rather than a 2D simulation, in which the governing equations are solved in a general non-orthogonal coordinate system, is constructed to describe and capture the features of the growth process. All this has been implemented and validated by using it to model the low pressure Cz growth of silicon. Accuracy of this scheme is demonstrated by agreement of simulation data with available experimental data. Using the quasi-steady state approximation, it is shown that the flow and temperature fields in the melt under certain operating conditions become asymmetric and unsteady even in the absence of extrinsic sources of asymmetry. Asymmetry in the flow and temperature fields, caused by high shear initiated phenomena, affects the interface shape in the azimuthal direction thus results in the thermal stress distribution in the vicinity, which has serious implications from crystal quality point of view.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave guiding chains to control the acoustic wave transmission. The rapid wave front amplitude decay exhibited by these granular networks makes them highly attractive for impact mitigation applications. The agreement between experiments, numerical simulations, and applicable theoretical predictions validates the wave guiding capabilities of these engineered granular crystals and networks and opens a wide range of possibilities for the realization of increasingly complex granular material design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Motivated by recent MSL results where the ablation rate of the PICA heatshield was over-predicted, and staying true to the objectives outlined in the NASA Space Technology Roadmaps and Priorities report, this work focuses on advancing EDL technologies for future space missions.

Due to the difficulties in performing flight tests in the hypervelocity regime, a new ground testing facility called the vertical expansion tunnel is proposed. The adverse effects from secondary diaphragm rupture in an expansion tunnel may be reduced or eliminated by orienting the tunnel vertically, matching the test gas pressure and the accelerator gas pressure, and initially separating the test gas from the accelerator gas by density stratification. If some sacrifice of the reservoir conditions can be made, the VET can be utilized in hypervelocity ground testing, without the problems associated with secondary diaphragm rupture.

The performance of different constraints for the Rate-Controlled Constrained-Equilibrium (RCCE) method is investigated in the context of modeling reacting flows characteristic to ground testing facilities, and re-entry conditions. The effectiveness of different constraints are isolated, and new constraints previously unmentioned in the literature are introduced. Three main benefits from the RCCE method were determined: 1) the reduction in number of equations that need to be solved to model a reacting flow; 2) the reduction in stiffness of the system of equations needed to be solved; and 3) the ability to tabulate chemical properties as a function of a constraint once, prior to running a simulation, along with the ability to use the same table for multiple simulations.

Finally, published physical properties of PICA are compiled, and the composition of the pyrolysis gases that form at high temperatures internal to a heatshield is investigated. A necessary link between the composition of the solid resin, and the composition of the pyrolysis gases created is provided. This link, combined with a detailed investigation into a reacting pyrolysis gas mixture, allows a much needed consistent, and thorough description of many of the physical phenomena occurring in a PICA heatshield, and their implications, to be presented.

Through the use of computational fluid mechanics and computational chemistry methods, significant contributions have been made to advancing ground testing facilities, computational methods for reacting flows, and ablation modeling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O presente trabalho trata do escoamento bifásico em meios porosos heterogêneos de natureza fractal, onde os fluidos são considerados imiscíveis. Os meios porosos são modelados pela equação de Kozeny-Carman Generalizada (KCG), a qual relaciona a porosidade com a permeabilidade do meio através de uma nova lei de potência. Esta equação proposta por nós é capaz de generalizar diferentes modelos existentes na literatura e, portanto, é de uso mais geral. O simulador numérico desenvolvido aqui emprega métodos de diferenças finitas. A evolução temporal é baseada em um esquema de separação de operadores que segue a estratégia clássica chamada de IMPES. Assim, o campo de pressão é calculado implicitamente, enquanto que a equação da saturação da fase molhante é resolvida explicitamente em cada nível de tempo. O método de otimização denominado de DFSANE é utilizado para resolver a equação da pressão. Enfatizamos que o DFSANE nunca foi usado antes no contexto de simulação de reservatórios. Portanto, o seu uso aqui é sem precedentes. Para minimizar difusões numéricas, a equação da saturação é discretizada por um esquema do tipo "upwind", comumente empregado em simuladores numéricos para a recuperação de petróleo, o qual é resolvido explicitamente pelo método Runge-Kutta de quarta ordem. Os resultados das simulações são bastante satisfatórios. De fato, tais resultados mostram que o modelo KCG é capaz de gerar meios porosos heterogêneos, cujas características permitem a captura de fenômenos físicos que, geralmente, são de difícil acesso para muitos simuladores em diferenças finitas clássicas, como o chamado fenômeno de dedilhamento, que ocorre quando a razão de mobilidade (entre as fases fluidas) assume valores adversos. Em todas as simulações apresentadas aqui, consideramos que o problema imiscível é bidimensional, sendo, portanto, o meio poroso caracterizado por campos de permeabilidade e de porosidade definidos em regiões Euclideanas. No entanto, a teoria abordada neste trabalho não impõe restrições para sua aplicação aos problemas tridimensionais.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The manufacture of materials products involves the control of a range of interacting physical phenomena. The material to be used is synthesised and then manipulated into some component form. The structure and properties of the final component are influenced by both interactions of continuum-scale phenomena and those at an atomistic-scale level. Moreover, during the processing phase there are some properties that cannot be measured (typically the liquid-solid phase change). However, it seems there is a potential to derive properties and other features from atomistic-scale simulations that are of key importance at the continuum scale. Some of the issues that need to be resolved in this context focus upon computational techniques and software tools facilitating: (i) the multiphysics modeling at continuum scale; (ii) the interaction and appropriate degrees of coupling between the atomistic through microstructure to continuum scale; and (iii) the exploitation of high-performance parallel computing power delivering simulation results in a practical time period. This paper discusses some of the attempts to address each of the above issues, particularly in the context of materials processing for manufacture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metals casting is a process governed by the interaction of a range of physical phenomena. Most computational models of this process address only what are conventionally regarded as the primary phenomena-heat conduction and solidification. However, to predict the formation of porosity (a factor of key importance in cast quality) requires the modelling of the interaction of the fluid flow, heat transfer, solidification and the development of stress-deformation in the solidified part of a component. In this paper, a model of the casting process is described which addresses all the main continuum phenomena involved in a coupled manner. The model is solved numerically using novel finite volume unstructured mesh techniques, and then applied to both the prediction of shape deformation (plus the subsequent formation of a gap at the metal-mould interface and its impact on the heat transfer behaviour) and porosity formation in solidifying metal components. Although the porosity prediction model is phenomenologically simplistic it is based on the interaction of the continuum phenomena and yields good comparisons with available experimental results. This work represents the first of the next generation of casting simulation tools to predict aspects of the structure of cast components.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper provides an overview of the developing needs for simulation software technologies for the computational modelling of problems that involve combinations of interactions amongst varying physical phenomena over a variety of time and space scales. Computational modelling of such problems requires software tech1nologies that enable the mathematical description of the interacting physical phenomena together with the solution of the resulting suites of equations in a numerically consistent and compatible manner. This functionality requires the structuring of simulation modules for specific physical phenomena so that the coupling can be effectively represented. These multi-physics and multi-scale computations are very compute intensive and the simulation software must operate effectively in parallel if it is to be used in this context. An approach to these classes of multi-disciplinary simulation in parallel is described, with some key examples of application to2 challenging engineering problems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Glenn Research Centre of NASA, USA (www.grc.nasa.gov/WWW/SiC/, silicon carbide electronics) is in pursuit of realizing bulk manufacturing of silicon carbide (SiC), specifically by mechanical means. Single point diamond turning (SPDT) technology which employs diamond (the hardest naturally-occurring material realized to date) as a cutting tool to cut a workpiece is a highly productive manufacturing process. However, machining SiC using SPDT is a complex process and, while several experimental and analytical studies presented to date aid in the understanding of several critical processes of machining SiC, the current knowledge on the ductile behaviour of SiC is still sparse. This is due to a number of simultaneously occurring physical phenomena that may take place on multiple length and time scales. For example, nucleation of dislocation can take place at small inclusions that are of a few atoms in size and once nucleated, the interaction of these nucleations can manifest stresses on the micrometre length scales. The understanding of how stresses manifest during fracture in the brittle range, or dislocations/phase transformations in the ductile range, is crucial in understanding the brittle–ductile transition in SiC. Furthermore, there is a need to incorporate an appropriate simulation-based approach in the manufacturing research on SiC, owing primarily to the number of uncertainties in the experimental research that includes wear of the cutting tool, poor controllability of the nano-regime machining scale (effective thickness of cut), and coolant effects (interfacial phenomena between the tool, workpiece/chip and coolant), etc. In this review, these two problems are combined together to posit an improved understanding on the current theoretical knowledge on the SPDT of SiC obtained from molecular dynamics simulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A detailed knowledge of the physical phenomena underlying the generation and the transport of fast electrons generated in high-intensity laser-matter interactions is of fundamental importance for the fast ignition scheme for inertial confinement fusion.

Here we report on an experiment carried out with the VULCAN Petawatt beam and aimed at investigating the role of collisional return currents in the dynamics of the fast electron beam. To that scope, in the experiment counter-propagating electron beams were generated by double-sided irradiation of layered target foils containing a Ti layer. The experimental results were obtained for different time delays between the two laser beams as well as for single-sided irradiation of the target foils. The main diagnostics consisted of two bent mica crystal spectrometers placed at either side of the target foil. High-resolution X-ray spectra of the Ti emission lines in the range from the Ly alpha to the K alpha line were recorded. In addition, 2D X-ray images with spectral resolution were obtained by means of a novel diagnostic technique, the energy-encoded pin-hole camera, based on the use of a pin-hole array equipped with a CCD detector working in single-photon regime. The spectroscopic measurements suggest a higher target temperature for well-aligned laser beams and a precise timing between the two beams. The experimental results are presented and compared to simulation results.