999 resultados para photoinduced effects
Resumo:
Positron annihilation lifetime (PAL) and photoinduced current transient spectroscopies (PICTS) have been employed to study the formation of compensation defects in undoped InP under different annealing processes with pure phosphorus (PP) ambience and iron phosphide (IP) ambience, respectively. The different annealing ambiences convert the as-grown n-type undoped InP into two types of semi-insulating (SI) states. The positron average lifetimes of as-grown InP, PP SI-InP, and IP SI-InP are found to be 246, 251, and 243 ps, respectively, which are all longer than the bulk lifetime of 240 ps, indicating the existence of vacancy-type positron-trapping defects. For as-grown InP, VInH4 complexes are the dominant defects. They dissociate into VInHn(0less than or equal tonless than or equal to3) acceptor vacancies under PP ambience annealing, compensating the residual shallow donors and turning the material semi-insulating. In forming IP SI-InP, diffusion of iron into V-In complexes under IP ambience annealing produces the substitutional compensation defect Fe-In, causing a shorter positron average lifetime. The PICTS measurements show that a group of vacancy-type defects has been suppressed by iron diffusion during the annealing process, which is in good agreement with the PAL results. (C) 2003 American Institute of Physics.
Resumo:
The TiO2 nanoparticle thin films have been sensitized in situ with CdS nanoparticles. The SPS measurement showed that large surface state density was present on the TiO2 nanoparticles and the surface state can be efficiently decreased by sensitization as well as selecting suitable heat treatment, Both the photocurrent response and the charge recombination kinetics in TiO2 thin films were strongly influenced by trapping/detrapping of surface states. The slow photocurrent response of TiO2 nanoparticulate thin films upon the illumination was attributed to the trap saturation effects, The semiconductor sensitization made the slow photoresponse disappeared and the steady-state photocurrent value increased drastically, which suggested that the sensitization of TiO2 thin films with CdS could get a better charge separation and provide a simple alternative to minimize the effect of surface state on the photocurrent response.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Power-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor-acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence and absorption, as well as nanosecond transient absorption spectroscopy to study the initial charge transfer step for blends of a donor poly(p-phenylenevinylene) derivative and low-band gap cyanine dyes serving as electron acceptors. Electron transfer is the dominant relaxation process after photoexcitation of the donor. Hole transfer after cyanine photoexcitation occurs with an efficiency close to unity up to dye concentrations of similar to 30 wt%. Cyanines present an efficient self-quenching mechanism of their fluorescence, and for higher dye loadings in the blend, or pure cyanine films, this process effectively reduces the hole transfer. Comparison between dye emission in an inert polystyrene matrix and the donor matrix allowed us to separate the influence of self-quenching and charge transfer mechanisms. Favorable photovoltaic bilayer performance, including high open-circuit voltages of similar to 1 V confirmed the results from optical experiments. The characteristics of solar cells using different dyes also highlighted the need for balanced adjustment of the energy levels and their offsets at the heterojunction when using low-bandgap materials, and accentuated important effects of interface interactions and solid-state packing on charge generation and transport.
Resumo:
The influence of time exposure, when exposed to above band gap light (3,52 eV) and annealing, on Ga10Ge25S65 glasses has been studied through their effects on the structure and optical properties. To evaluate the photostructural change infrared and Raman spectra for bulk Ga10Ge25S65 glasses have been measured before and after exposure. The Raman spectra are interpreted in terms of models in which the Ge atoms are fourfold coordinated and the S atoms are two fold coordinated. The observed changes in the spectral region of (S-S) stretching vibration (470-490 cm (-1)) is a direct evidence for the occurrence of important structural changes in local bonding configuration caused by optical irradiation. It is shown that the dominant photostrucural changes are chain formation tendency of the chalcogenide atoms under the laser irradiation rather than rings.
Resumo:
Azobenzene molecules and their derivatives have been widely investigated for their potential applications in optical and electrooptical devices. We have prepared a new guest-host system from natural rubber (NR) impregnated with azobenzene derivative Sudan Red B (SRB). The effects of stretching and immersion time on photoinduced orientation were investigated by birefringence signal measurements. We have found that the molecular orientation increase when the samples are stretched and decrease with the increase of immersion time. The first behavior was explained by using the random coil model and the latter was attributed to increase of the aggregation of SRB into NR matrix. (C) 2012 Published by Elsevier B.V.
Resumo:
Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyser. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. The response to lateral force was finally investigated. As it induces birefringence in addition to the photo-induced one, an increase of the PDL and DGD values were noticed. © 2014 Copyright SPIE.
Resumo:
Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum–classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.