21 resultados para photobacterium,


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Programa de doctorado en Sanidad Animal y Seguridad Alimentaria

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Technological advances in gear and fishing practices have driven the global expansion of the American lobster live seafood market. These changes have had a positive effect on the lobster industry by increasing capture efficiency. However, it is unknown what effect these improved methods will have on the post-capture fitness and survival of lobsters. This project utilized a repeated measures design to compare the physiological changes that occur in lobsters over time as the result of differences in depth, hauling rate, and storage methodology. The results indicate that lobsters destined for long distance transport or temporary storage in pounds undergo physiological disturbance as part of the capture process. These changes are significant over time for total hemocyte counts, crustacean hyperglycemic hormone, L-lactate, ammonia, and glucose. Repeated measures multivariate analysis of variance (MANOVA) for glucose indicates a significant interaction between depth and storage methodology over time for non-survivors. A Gram-negative bacterium, Photobacterium indicum, was identified in pure culture from hemolymph samples of 100% of weak lobsters. Histopathology revealed the presence of Gram-negative bacteria throughout the tissues with evidence of antemortem edema and necrosis suggestive of septicemia. On the basis of these findings, we recommend to the lobster industry that if a reduction in depth and hauling rate is not economically feasible, fishermen should take particular care in handling lobsters and provide them with a recovery period in recirculating seawater prior to land transport. The ecological role of P. indicum is not fully defined at this time. However, it may be an emerging opportunistic pathogen of stressed lobsters. Judicious preemptive antibiotic therapy may be necessary to reduce mortality in susceptible lobsters destined for high-density holding facilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. Results: While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. Conclusion: The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 µatm, minimum Omega (arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 µatm, minimum Omega (arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 µatm, minimum Omega (arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eukaryotic Cu,Zn superoxide dismutases (CuZnSODs) are antioxidant enzymes remarkable for their unusually stable β-barrel fold and dimer assembly, diffusion-limited catalysis, and electrostatic guidance of their free radical substrate. Point mutations of CuZnSOD cause the fatal human neurodegenerative disease amyotrophic lateral sclerosis. We determined and analyzed the first crystallographic structure (to our knowledge) for CuZnSOD from a prokaryote, Photobacterium leiognathi, a luminescent symbiont of Leiognathid fish. This structure, exemplifying prokaryotic CuZnSODs, shares the active-site ligand geometry and the topology of the Greek key β-barrel common to the eukaryotic CuZnSODs. However, the β-barrel elements recruited to form the dimer interface, the strategy used to forge the channel for electrostatic recognition of superoxide radical, and the connectivity of the intrasubunit disulfide bond in P. leiognathi CuZnSOD are discrete and strikingly dissimilar from those highly conserved in eukaryotic CuZnSODs. This new CuZnSOD structure broadens our understanding of structural features necessary and sufficient for CuZnSOD activity, highlights a hitherto unrecognized adaptability of the Greek key β-barrel building block in evolution, and reveals that prokaryotic and eukaryotic enzymes diverged from one primordial CuZnSOD and then converged to distinct dimeric enzymes with electrostatic substrate guidance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Senegalese sole (Solea senegalensis) has been considered since the 1990´s to be a promising flatfish species for diversifying European marine aquaculture. However, pathogen outbreaks leading to high mortality rates can impair Senegalese sole commercial production at the weaning phase. Different approaches have been shown to improve fish immunocompetence; with this in mind the objective of the work described herein was to determine whether increased levels of dietary vitamin A (VA) improve the immune response in early juveniles of Senegalese sole. For this purpose, Senegalese sole were reared and fed with Artemia metanauplii containing increased levels of VA (37,000; 44,666; 82,666 and 203,000 total VA IU Kg-1) from 6 to 60 days post-hatch (early juvenile stage). After an induced bacterial infection with a 50 % lethal dose of Photobacterium damselae subsp. damselae, survival rate, as well as underlying gene expression of specific immune markers (C1inh, C3, C9, Lgals1, Hamp, LysC, Prdx1, Steap4 and Transf) were evaluated. Results showed that fish fed higher doses of dietary VA were more resistant to the bacterial challenge. The lower mortality was found to be related with differential expression of genes involved in the complement system and iron availability. We suggest that feeding metamorphosed Senegalese sole with 203,000 total VA IU Kg-1 might be an effective, inexpensive and environmentally friendly method to improve Senegalese sole immunocompetence, thereby improving survival of juveniles and reducing economic losses.