949 resultados para phosphate solubilization
Resumo:
Este trabalho procurou verificar o efeito da adição de duas fontes de fosfato prontamente disponíveis, superfosfato triplo e fosfato solubilizado obtido por via microbiológica e uma fonte não prontamente disponível, apatita de Araxá, na cultura do milho. em adição, foi verificado o efeito da inoculação do fungo Aspergillus niger, solubilizador de fosfato de rocha e da adição de matéria orgânica. Nos tratamentos em que se usou matéria orgânica, houve um aumento de população microbiana total do solo, mas nenhum efeito foi observado na produção e absorção de fósforo pela cultura do milho. Tanto o superfosfato triplo como a apatita de Araxá permitiram resultados mais favoráveis em termos de produção de massa seca e absorção de fósforo pelo milho em relação ao controle (sem fósforo) e à utilização de fosfato solubilizado. Também não se constatou efeito da inoculação de A. niger sobre a solubilização do fosfato de rocha, possivelmente devido à interferência dos microrganismos naturais do solo. O numero de microrganismos e a atividade da fosfatase ácida foram menores no solo fertilizado com superfosfato triplo que com apatita de Araxá.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Clonal eucalyptus plantings have increased in recent years; however, some clones with high production characteristics have vegetative propagation problems because of weak root and aerial development. Endophytic microorganisms live inside healthy plants without causing any damage to their hosts and can be beneficial, acting as plant growth promoters. We isolated endophytic bacteria from eucalyptus plants and evaluated their potential in plant growth promotion of clonal plantlets of Eucalyptus urophylla x E. grandis, known as the hybrid, E. urograndis. Eighteen isolates of E. urograndis, clone 4622, were tested for plant growth promotion using the same clone. These isolates were also evaluated for indole acetic acid production and their potential for nitrogen fixation and phosphate solubilization. The isolates were identified by partial sequencing of 16S rRNA. Bacillus subtilis was the most prevalent species. Several Bacillus species, including B. licheniformis and B. subtilis, were found for the first time as endophytes of eucalyptus. Bacillus sp strain EUCB 10 significantly increased the growth of the root and aerial parts of eucalyptus plantlets under greenhouse conditions, during the summer and winter seasons.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Background: Endophytic bacteria are ubiquitous in all plant species contributing in host plant\'s nutrient uptake and helping the host to improve its growth. Moringa peregrina which is a medicinal plant, growing in arid region of Arabia, was assessed for the presence of endophytic bacterial strains. Results: PCR amplification and sequencing of 16S rRNA of bacterial endophytes revealed the 5 endophytic bacteria, in which 2 strains were from Sphingomonas sp.; 2 strains from Bacillus sp. and 1 from Methylobacterium genus. Among the endophytic bacterial strains, a strain of Bacillus subtilis LK14 has shown significant prospects in phosphate solubilization (clearing zone of 56.71 mm after 5 d), ACC deaminase (448.3 ± 2.91 nM α-ketobutyrate mg-1 h-1) and acid phosphatase activity (8.4 ± 1.2 nM mg-1 min-1). The endophytic bacteria were also assessed for their potential to produce indole-3-acetic acid (IAA). Among isolated strains, the initial spectrophotometry analysis showed significantly higher IAA production by Bacillus subtilis LK14. The diurnal production of IAA was quantified using multiple reactions monitoring method in UPLC/MS–MS. The analysis showed that LK14 produced the highest (8.7 μM) IAA on 14th d of growth. Looking at LK14 potentials, it was applied to Solanum lycopersicum , where it significantly increased the shoot and root biomass and chlorophyll (a and b) contents as compared to control plants. Conclusion: The study concludes that using endophytic bacterial strains can be bio-prospective for plant growth promotion, which might be an ideal strategy for improving growth of crops in marginal lands.
Resumo:
Phosphorus, as phosphate, is frequently found as a constituent of many of the world iron resources. Phosphorus is an extremely harmful element found in iron ore used as a raw material in the steelmaking process because it will affect the quality of iron and steel products. Allowable phosphorus concentration in high quality steel is usually less than 0.08%. Dephosphorization of iron ore has been studied for a long time. Although there are described physical beneficiation and chemical leaching processes, involving inorganic acids, to reduce phosphorus content of iron ores, these processes have several limitations such as poor recovery, require high energy quantity, capital costs and cause environmental pollution. Use of microorganisms in leaching of mineral ores is gaining importance due to the implementation of stricter environmental rules. Microbes convert metal compounds into their water soluble forms and are biocatalysts of leaching processes. Biotechnology is considered as an eco-friendly, promising, and revolutionary solution to these problems. Microorganisms play a critical role in natural phosphorus cycle and the process of phosphate solubilization by microorganisms has been known for many years. This study was performed to analyze the possibility of using bioleaching as a process for the dephosphorization of an iron ore from Northeast of Portugal. For bioleaching, Acidithiobacillus ferrooxidans bacterium were used. For this study two experiments were done with different conditions, which lasts 6 weeks for first experiment and 5 weeks for second experiment. From the result of these preliminary studies, it was observed that for first experiment 6.2 % and for second experiment 3.7 % of phosphorus was removed from iron ore.
Resumo:
Twenty endophytic bacteria were isolated from the meristematic tissues of three varieties of strawberry cultivated in vitro, and further identified, by FAME profile, into the genera Bacillus and Sphingopyxis. The strains were also characterized according to indole acetic acid production, phosphate solubilization and potential for plant growth promotion. Results showed that 15 strains produced high levels of IAA and all 20 showed potential for solubilizing inorganic phosphate. Plant growth promotion evaluated under greenhouse conditions revealed the ability of the strains to enhance the root number, length and dry weight and also the leaf number, petiole length and dry weight of the aerial portion. Seven Bacillus spp. strains promoted root development and one strain of Sphingopyxis sp. promoted the development of plant shoots. The plant growth promotion showed to be correlated to IAA production and phosphate solubilization. The data also suggested that bacterial effects could potentially be harnessed to promote plant growth during seedling acclimatization in strawberry