991 resultados para pharmaceutical engineering


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of active pharmaceutical ingredients (APIs) are crystalline solids in their pure forms. Crystalline solids have definable morphologies, i.e. shape and size. Crystal morphology is determined by both the internal structure of the crystals and external factors during growth from solution. The morphology of a crystal batch can affect key processes during manufacturing. Companies generally accept whatever morphology the manufacturing process provides and deal with any subsequent problems by costly trouble‒shooting. Rational design of optimised morphologies for crystalline pharmaceutical solids would be a very significant technical and commercial advance. Chapter one introduces the concept of crystal nucleation and growth. The phenomenon of polymorphism alongside the causes and impact is discussed. A summary of the scope of instrumentation used in the investigation of crystal polymorphism and morphology, including crystal size distribution (CSD), is also included. Chapter two examines the research carried out during an exploration of the optimum crystallisation parameters of phenacetin. Following a morphological study, the impact this induces on particle density and flow properties is examined. The impact of impurities on the crystallisation properties of phenacetin is investigated. Significantly, the location of impurities within individual crystals is also studied. The third chapter describes an industrial collaboration looking at the resolution and polymorphic study of trometamol and lysine salts of ketoprofen and 2‒phenylpropionic acid (2‒PPA). Chapter four incorporates a solid state study on three separate compounds: 2‒chloro‒4‒nitroaniline, 4‒hydroxy‒N‒phenylbenzenesulfonamide and N‒acetyl‒D‒glucosamine‒6‒O‒sulfate. 2‒Chloro‒4‒nitroaniline and 4‒hydroxy‒N‒phenylbenzenesulfonamide both produced interesting, extreme morphologies which warranted further investigation as part of a collaborative study. Following a summarisation of results in chapter five, chapter six contains the full experimental details, incorporating spectral and other analytical data for all compounds synthesised during the course of the research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The silicone elastomer solubilities of a range of drugs and pharmaceutical excipients employed in the development of silicone intravaginal drug delivery rings (polyethylene glycols, norethisterone acetate, estradiol, triclosan, oleyl alcohol, oxybutynin) have been determined using dynamic mechanical analysis. The method involves measuring the concentration-dependent decrease in the storage modulus associated with the melting of the incorporated drug/excipient, and extrapolation to zero change in storage modulus. The study also demonstrates the effect of drug/excipient concentrations on the mechanical stiffness of the silicone devices at 37°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the influence of process parameters on the fluidised hot melt granulation of lactose and PEG 6000, and the subsequent tablet pressing of the granules. Granulation experiments were performed to assess the effect of granulation time and binder content of the feed on the resulting granule properties such as mass mean granule size, size distribution, granule fracture stress, and granule porosity. These data were correlated using the granule growth regime model. It was found that the dominant granule growth mechanisms in this melt granulation system were nucleation followed by steady growth (PEG 10–20% w/w). However, with binder contents greater than 20% w/w, the granulation mechanism moved to the “over-wet massing” regime in which discrete granule formation could not be obtained. The granules produced in the melt fluidised bed process were subsequently pressed into tablets using an industrial tablet press. The physical properties of the tablets: fracture stress, disintegration time and friability were assessed using industry standards. These analyses indicated that particle size and binder content of the initial granules influenced the mechanical properties of the tablets. It was noted that a decrease in initial granule size resulted in an increase in the fracture stress of the tablets formed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the use of co-melt fluidised bed granulation for the agglomeration of model pharmaceutical powders, namely, lactose mono-hydrate, PEG 10000, poly-vinyl pyrolidone and ibuprofen as a model drug. Granulation within the co-melt system was found to follow a nucleationâ??steady growthâ??coating regime profile. Using high molecular weight PEG binder, the granulation mechanism and thus the extent of granulation was found to be significantly influenced by binder viscosity. The compression properties of the granulate within the hot fluidised bed were correlated using a novel high temperature experimental procedure. It was found that the fracture stress and fractural modulus of the materials under hot processing conditions were orders of magnitude lower than those measured under ambient conditions. A range of particle velocities within the granulator were considered based on theoretical models. After an initial period of nucleation, the Stokes deformation number analysis indicated that only velocities within the high shear region of the fluidised bed were sufficient to promote significant granule deformation and therefore, coalescence. The data also indicated that larger granules de-fluidised preventing agglomeration by coalescence. Furthermore, experimental data indicated that dissipation of the viscous molten binder to the surface was the most important factor in the latter stages of the granulation process. From a pharmaceutical perspective the inclusion of the model drug, ibuprofen, combined with PVP in the co-melt process proved to be highly significant. It was found that using DSC analysis on the formulations that the decrease in the heat of fusion associated with the melting of ibuprofen within the FHMG systems may be attributed to interaction between PVP and ibuprofen through inter-molecular hydrogen bonding. This interaction decreases the crystallinity of ibuprofen and facilitates solubilisation and bioavailability within the solid matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates a model system for potential pharmaceutical materials in fluidised bed processes. In particular, this study proposes a novel use of Raman spectroscopy, which allows in situ measurement of the composition of the material within the fluidised bed in three spatial dimensions and as a function of time. This is achieved by recording Raman spectra from specific volumes of space. The work shows that Raman spectroscopy can be used to provide 3D maps of the concentration and chemical structure of the particles in a fluidised bed within a relatively short (120 s) time window. At the most basic level the technique measures particle density via the intensity of the Raman spectra, however this could be used. More importantly the data are also rich in spectroscopic information on the chemical structure of the fluidised particles which is useful either for monitoring a given granulation process or more generally for the analysis of the dynamics of the airflow if the data were incorporated into an appropriate model. The technique has the potential to give detailed in situ information on how the structure and composition of the granules/powders within the fluidised bed (dryer or granulator) vary with the position and evolve with time. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slow release drugs must be manufactured to meet target specifications with respect to dissolution curve profiles. In this paper we consider the problem of identifying the drivers of dissolution curve variability of a drug from historical manufacturing data. Several data sources are considered: raw material parameters, coating data, loss on drying and pellet size statistics. The methodology employed is to develop predictive models using LASSO, a powerful machine learning algorithm for regression with high-dimensional datasets. LASSO provides sparse solutions facilitating the identification of the most important causes of variability in the drug fabrication process. The proposed methodology is illustrated using manufacturing data for a slow release drug.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in tissue engineering and regenerative medicine have shown that controlling cells microenvironment during growth is a key element to the development of successful therapeutic system. To achieve such control, researchers have first proposed the use of polymeric scaffolds that were able to support cellular growth and, to a certain extent, favor cell organization and tissue structure. With nowadays availability of a large pool of stem cell lines, such approach has appeared to be rather limited since it does not offer the fine control of the cell micro-environment in space and time (4D). Therefore, researchers are currently focusing their efforts on developing strategies that include active compound delivery systems in order to add a fourth dimension to the design of 3D scaffolds. This review will focus on recent concepts and applications of 2D and 3D techniques that have been used to control the load and release of active compounds used to promote cell differentiation and proliferation in or out of a scaffold. We will first present recent advances in the design of 2D polymeric scaffolds and the different techniques that have been used to deposit molecular cues and cells in a controlled fashion. We will continue presenting the recent advances made in the design of 3D scaffolds based on hydrogels as well as polymeric fibers and we will finish by presenting some of the research avenues that are still to be explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Con la creciente popularidad de las soluciones de IT como factor clave para aumentar la competitividad y la creación de valor para las empresas, la necesidad de invertir en proyectos de IT se incrementa considerablemente. La limitación de los recursos como un obstáculo para invertir ha obligado a las empresas a buscar metodologías para seleccionar y priorizar proyectos, asegurándose de que las decisiones que se toman son aquellas que van alineadas con las estrategias corporativas para asegurar la creación de valor y la maximización de los beneficios. Esta tesis proporciona los fundamentos para la implementación del Portafolio de dirección de Proyectos de IT (IT PPM) como una metodología eficaz para la gestión de proyectos basados en IT, y una herramienta para proporcionar criterios claros para los directores ejecutivos para la toma de decisiones. El documento proporciona la información acerca de cómo implementar el IT PPM en siete pasos, el análisis de los procesos y las funciones necesarias para su ejecución exitosa. Además, proporciona diferentes métodos y criterios para la selección y priorización de proyectos. Después de la parte teórica donde se describe el IT PPM, la tesis aporta un análisis del estudio de caso de una empresa farmacéutica. La empresa ya cuenta con un departamento de gestión de proyectos, pero se encontró la necesidad de implementar el IT PPM debido a su amplia cobertura de procesos End-to-End en Proyectos de IT, y la manera de asegurar la maximización de los beneficios. Con la investigación teórica y el análisis del estudio de caso, la tesis concluye con una definición práctica de un modelo aproximado IT PPM como una recomendación para su implementación en el Departamento de Gestión de Proyectos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oral administration with solid dosage forms is a common route in the drug therapy widely used. The drug release by the disintegration process occurs in several gastrointestinal tract (GIT) regions. AC Biosusceptometry (ACB) was originally proposal to characterize the disintegration process of tablets in vitro and in the human stomach, through changes in magnetic signals. The aim of this work was to employ a multisensor ACB system to monitoring magnetic tablets and capsules in the human GIT and to obtain the magnetic images of the disintegration process. The ACB showed accuracy to quantify the gastric residence time, the intestinal transit time and the magnetic images allowed to visualize the disintegration of magnetic formulations in the GIT. The ACB is a non-invasive, radiation free technique, completely safe and harmless to the volunteers and had demonstrated potential to evaluate pharmaceutical dosage forms in the human gastrointestinal tract. © 2005 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protein silk fibroin (SF) from the silkworm Bombyx mori is a FDA-approved biomaterial used over centuries as sutures wire. Importantly, several evidences highlighted the potential of silk biomaterials obtained by using so-called regenerated silk fibroin (RSF) in biomedicine, tissue engineering and drug delivery. Indeed, by a water-based protocol, it is possible to obtain protein water-solution, by extraction and purification of fibroin from silk fibres. Notably, RSF can be processed in a variety of biomaterials forms used in biomedical and technological fields, displaying remarkable properties such as biocompatibility, controllable biodegradability, optical transparency, mechanical robustness. Moreover, RSF biomaterials can be doped and/or chemical functionalized with drugs, optically active molecules, growth factors and/or chemicals In this view, activities of my PhD research program were focused to standardize the process of extraction and purification of protein to get the best physical and chemical characteristics. The analysis of the chemo-physical properties of the fibroin involved both the RSF water-solution and the protein processed in film. Chemo-physical properties have been studied through: vibrational (FT-IR and Raman-FT) and optical (absorption and emission UV-VIS) spectroscopy, nuclear magnetic resonance (1H and 13C NMR), thermal analysis and thermo-gravimetric scan (DSC and TGA). In the last year of my PhD, activities were focused to study and define innovative methods of functionalization of the silk fibroin solution and films. Indeed, research program was the application of different methods of manufacturing approaches of the films of fibroin without the use of harsh treatments and organic solvents. New approaches to doping and chemical functionalization of the silk fibroin were studied. Two different methods have been identified: 1) biodoping that consists in the doping of fibroin with optically active molecules through the addition of fluorescent molecules in the standard diet used for the breeding of silkworms; 2) chemical functionalization via silylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production by biosynthesis of optically active amino acids and amines satisfies the pharmaceutical industry in its demand for chiral building blocks for the synthesis of various pharmaceuticals. Among several enzymatic methods that allow the synthesis of optically active aminoacids and amines, the use of minotransferase is a promising one due to its broad substrate specificity and no requirement for external cofactor regeneration. The synthesis of chiral compounds by aminotransferases can be done either by asymmetric synthesis starting from keto acids or ketones, and by kinetic resolution starting from racemic aminoacids or amines. The asymmetric synthesis of substituted (S)-aminotetralin, an active pharmaceutical ingredient (API), has shown to have two major factors that contribute to increasing the cost of production. These factors are the raw material cost of biocatalyst used to produce it and product loss during biocatalyst separation. To minimize the cost contribution of biocatalyst and to minimize the loss of product, two routes have been chosen in this research: 1. To engineer the aminotransferase biocatalyst to have greater specific activity, and 2. Improve the engineering of the process by immobilization of biocatalyst in calcium alginate and addition of cosolvents. An (S)-aminotransferase (Mutant CNB03-03) was immobilized, not as purified enzyme but as enzyme within spray dried cells, in calcium alginate beads and used to produce substituted (S)-aminotetralin at 50 °C and pH 7 in experiments where the immobilized biocatalyst was recycled. Initial rate of reaction for cycle 1 (6 hr duration) was determined to be 0.258 mM/min, for cycle 2 (20 hr duration) it decreased by ~50% compared to cycle 1, and for cycle 3 (20 hr duration) it decreased by ~90% compared to cycle 1 (immobilized preparation consisted of 50 mg of spray dried cells per gram of calcium alginate). Conversion to product for each cycle decreased as well, from 100% in cycle 1 (About 50 mM), 80% in cycle 2, and 30% after cycle 3. This mutant was determined to be deactivated at elevated temperatures during the reaction cycle and was not stable enough to allow multiple cycles in its immobilized form. A new mutant aminotransferase was isolated by applying error-prone polymerase chain reaction (PCR) on the gene coding for this enzyme and screening/selection: CNB04-01. This mutant showed a significant improvement in thermostability in comparison to CNB03-03. The new mutant was immobilized and tested under similar reaction conditions. Initial rate remained fairly constant (0.2 mM/min) over four cycles (each cycle with a duration of about 20 hours) with the mutant retaining almost 80% of initial rate in the fourth cycle. The final product concentrations after each cycle did not decrease during recycle experiments. Thermostability of CNB04-01 was much improved compared to CNB03-03. Under the same reaction conditions as stated above, the addition of co-solvents was studied in order to increase substituted tetralone solubility. Toluene and sodium dodecylsulfate (SDS) were used. SDS at 0.01% (w/v) allowed four recycles of the immobilized spray dried cells of CNB04-01, always reaching higher product concentration (80-85 mM) than the system with toluene at 3% (v/v) -70 mM-. The long term activity of immobilized CNB04-01 in a system with SDS 0.01% (w/v) at 50 °C, pH 7 was retained for three cycles (20 to 24 hours each one), reaching always final product concentration between 80-85 mM, but dropping precipitously in the fourth cycle to a final product concentration of 50 mM. Although significant improvement of immobilization on productivity and stability were observed using CNB04-01, another observation demonstrated the limitations of an immobilization strategy on reducing process costs. After analyzing the results of this experiment it was seen that a sudden drop occurred on final product concentration after the third recycle. This was due to product accumulation inside the immobilized preparation. In order to improve the economics of the process, research was focused on developing a free enzyme with an even higher activity, thus reducing raw material cost as well as improving biomass separation. A new enzyme was obtained (CNB05-01) using error-prone PCR and screening using as a template the gene derived from the previous improved enzyme. This mutant was determined to have 1.6 times the initial rate of CNB04-01 and had a higher temperature optimum (55°). This new enzyme would allow reducing enzyme loading in the reaction by five-fold compared to CNB03-03, when using it at concentration of one gram of spray dried cells per liter (completing the reaction after 20-24 hours). Also this mutant would allow reducing process time to 7-8 hours when used at a concentration of 5 grams of spray dried cells per liter compared to 24 hours for CNB03-03, assuming that the observations shown before are scalable. It could be possible to improve the economics of the process by either reducing enzyme concentration or reducing process time, since the production cost of the desired product is primarily a function of both enzyme concentration and process time.