996 resultados para peripheral populations
Resumo:
Capsule application of Diamidino Yellow (DY) to the cut end of the sciatic nerve immediately followed by capsule application of Fast Blue (FB) resulted in approximate to 95% double-labelled dorsal root ganglion neurones (DRGn) and motoneurones (Mn). Nerve injection of DY followed either immediately or 2 months later by capsule application of FB resulted in approximate to 90% double-labelled DRGn and Mn, indicating that DY and FB label similar populations of DRGn and Mn, and that insignificant DY fading occurred during this period. Inversing the order of application, however, i.e. nerve injection of FB followed immediately by capsule application of DY, resulted in double labelling in only approximate to 10% of the DRGn and Mn. These percentages increased to 70% of the DRGn and 60% of the Mn when the FB injection was followed 1 or 2 months after by the DY application, indicating that DY uptake is blocked by recent administration of FB. The results indicate that DY and FB might be useful for sequential labelling before and after nerve injury as a tool to investigate the accuracy of sensory and motor regeneration.
Resumo:
BACKGROUND: Several guidelines recommend computed tomography scans for populations with high-risk for lung cancer. The number of individuals evaluated for peripheral pulmonary lesions (PPL) will probably increase, and with it non-surgical biopsies. Associating a guidance method with a target confirmation technique has been shown to achieve the highest diagnostic yield, but the utility of bronchoscopy with radial probe endobronchial ultrasound using fluoroscopy as guidance without a guide sheath has not been reported. METHODS: We conducted a retrospective analysis of bronchoscopy with radial probe endobronchial ultrasound using fluoroscopy procedures for the investigation of PPL performed by experienced bronchoscopists with no specific previous training in this particular technique. Operator learning curves and radiological predictors were assessed for all consecutive patients examined during the first year of application of the technique. RESULTS: Fifty-one PPL were investigated. Diagnostic yield and visualization yield were 72.5 and 82.3% respectively. The diagnostic yield was 64.0% for PPL ≤20mm, and 80.8% for PPL>20mm. No false-positive results were recorded. The learning curve of all diagnostic tools showed a DY of 72.7% for the first sub-group of patients, 81.8% for the second, 72.7% for the third, and 81.8% for the last. CONCLUSION: Bronchoscopy with radial probe endobronchial ultrasound using fluoroscopy as guidance is safe and simple to perform, even without specific prior training, and diagnostic yield is high for PPL>and ≤20mm. Based on these findings, this method could be introduced as a first-line procedure for the investigation of PPL, particularly in centers with limited resources.
Resumo:
Background: The relationship between the immune response and red and white blood cell homeostasis is cited in literature, but no studies regarding the balance of these cell populations following maxillary bone-graft surgeries can be found. Aim: The aim of this study was to evaluate the possible impairments in the blood cell balance following fresh-frozen allogeneic bone-graft augmentation procedures in patients who needed maxillary reconstruction prior to implants. Material and Methods: From 33 patients elected to onlay bone grafting procedures, 20 were treated with fresh-frozen bone allografts and 13 with autologous bone grafts. Five blood samples were collected from each patient in a 6-month period (baseline: 14, 30, 90, and 180 days postsurgery), and the hematological parameters (erythrogram, leukogram, and platelets count) were accessed. Results: All evaluated parameters were within the reference values accepted as normal, and significant differences were found for the eosinophils count when comparing the treatments (30 days, p=.035) and when comparing different periods of evaluation (allograft-treated group, baseline×180 days, p≤.05 and 90×180 days, p≤.01; autograft-treated group, 30×90 days, p≤.05 and 30×180 days, p≤.05). Conclusions: Both autologous and fresh-frozen allogeneic bone grafts did not cause any impairment in the red and white blood cell balance, based on quantitative hemogram analysis, in patients subjected to maxillary reconstruction. © 2011 Wiley Periodicals, Inc.
Resumo:
Approximately 25% of acute myeloid leukemias (AMLs) carry internal tandem duplications (ITD) of various lengths within the gene encoding the FMS-like tyrosine kinase receptor 3 (FLT3). Although varying duplication sites exist, most of these length mutations affect the protein´s juxtamembrane domain. FLT3-ITDs support leukemic transformation by constitutive phosphorylation resulting in uncontrolled activation, and their presence is associated with worse prognosis. As known form previous work, they represent leukemia- and patient-specific neoantigens that can be recognized by autologous AML-reactive CD8+ T cells (Graf et al., 2007; Graf et al., unpublished). Herein, in patient FL, diagnosed with FLT3-ITD+ AML and in first complete remission after induction chemotherapy, T cells against her leukemia´s individual FLT3-ITD were detected at a frequency up to 1.7x10-3 among peripheral blood CD8+ T lymphocytes. This rather high frequency suggested, that FLT3-ITD-reactive T cells had been expanded in vivo due to the induction of an anti-leukemia response.rnrnCell material from AML patients is limited, and the patients´ anti-leukemia T-cell repertoire might be skewed, e.g. due to complex previous leukemia-host interactions and chemotherapy. Therefore, allogeneic sources, i.e. buffy coats (BCs) from health donors and umbilical cord blood (UCB) donations, were exploited for the presence and the expansion of FLT3-ITD-reactive T-cell populations. BC- and UCB-derived CD8+ T cells, were distributed at 105 cells per well on microtiter plates and, were stimulated with antigen-presenting cells (APCs) transfected with in vitro-transcribed mRNA (IVT-mRNA) encoding selected FTL3-ITDs. APCs were autologous CD8- blood mononuclear cells, monocytes or FastDCs.rnrnBuffy coat lymphocytes from 19 healthy individuals were analyzed for CD8+ T-cell reactivity against three immunogenic FLT3-ITDs previously identified in patients VE, IN and QQ and designated as VE_, IN_ and QQ_FLT3-ITD, respectively. These healthy donors carried at least one of the HLA I alleles known to present an ITD-derived peptide from one of these FLT3-ITDs. Reactivities against single ITDs were observed in 8/19 donors. In 4 donors the frequencies of ITD-reactive T cells were determined and were estimated to be in the range of 1.25x10-6 to 2.83x10-7 CD8+ T cells. These frequencies were 1,000- to 10,000-fold lower than the frequency of autologous FLT3-ITD-reactive T cells observed in patient FL. Restricting HLA I molecules were identified in two donors. In one of them, the recognition of VE_FLT3-ITD was found to be restricted by HLA-C*07:02, which is different from the HLA allele restricting the anti-ITD T cells of patient VE. In another donor, the recognition of IN_FLT3-ITD was restricted by HLA-B*35:01, which also had been observed in patient IN (Graf et al., unpublished). By gradual 3´-fragmentation of the IN_FLT3-ITD cDNA, the 10-mer peptide CPSDNEYFYV was identified as the target of allogeneic T cells against IN_FLT3-ITD. rnLymphocytes in umbilical cord blood predominantly exhibit a naïve phenotype. Seven UCB donations were analyzed for T-cell responses against the FLT3-ITDs of patients VE, IN, QQ, JC and FL irrespective of their HLA phenotype. ITD-reactive responses against all stimulatory FLT3-ITDs were observed in 5/7 UCB donations. The frequencies of T cells against single FLT3-ITDs in CD8+ lymphocytes were estimated to be in the range of 1.8x10-5 to 3.6x10-6, which is nearly 15-fold higher than the frequencies observed in BCs. Restricting HLA I molecules were identified in 4 of these 5 positive UCB donations. They were mostly different from those observed in the respective patients. But in one UCB donation T cells against the JC_FLT3-ITD had exactly the same peptide specificity and HLA restriction as seen before in patient JC (Graf et al., 2007). Analyses of UCB responder lymphocytes led to the identification of the 10-mer peptide YESDNEYFYV, encoded by FL_FLT3-ITD, that was recognized in association with the frequent allele HLA-A*02:01. This peptide was able to stimulate and enrich ITD-reactive T cells from UCB lymphocytes in vitro. Peptide responders not only recognized the peptide, but also COS-7 cells co-transfected with FL_FLT3-ITD and HLA-A*02:01.rnrnIn conclusion, T cells against AML- and individual-specific FLT3-ITDs were successfully generated not only from patient-derived blood, but also from allogeneic sources. Thereby, ITD-reactive T cells were detected more readily and at higher frequencies in umbilical cord blood than in buffy coat lymphocytes. It occurred that peptide specificity and HLA restriction of allogeneic, ITD-reactive T cells were identical to autologous patient-derived T cells. As shown herein, allogeneic, FLT3-ITD-reactive T cells can be used for the identification of FLT3-ITD-encoded peptides, e.g. for future therapeutic vaccination studies. In addition, these T cells or their receptors can be applied to adoptive transfer.
Resumo:
Peripheral artery disease is a progressive disease. Primary ischemic leg symptoms are muscle fatigue, discomfort or pain during ambulation, known as intermittent claudication. The most severe manifestation of peripheral artery disease is critical limb ischemia (CLI). The long-term safety of gene therapy in peripheral artery disease remains unclear. This four center peripheral artery disease registry was designed to evaluate the long-term safety of the intramuscular non-viral fibroblast growth factor-1 (NV1FGF), a plasmid-based angiogenic gene for local expression of fibroblast growth factor-1 versus placebo in patients with peripheral artery disease who had been included in five different phase I and II trials. Here we report a 3-year follow-up in patients suffering from CLI or intermittent claudication. There were 93 evaluable patients, 72 of them in Fontaine stage IV (47 NV1FGF versus 25 placebo) and 21 patients in Fontaine stage IIb peripheral artery disease (15 NV1FGF versus 6 placebo). Safety parameters included rates of non-fatal myocardial infarction (MI), stroke, death, cancer, retinopathy and renal dysfunction. At 3 years, in 93 patients included this registry, there was no increase in retinopathy or renal dysfunction associated with delivery of this angiogenic factor. There was also no difference in the number of strokes, MI or deaths, respectively, for NV1FGF versus placebo. In the CLI group, new cancer occurred in two patients in the NV1FGF group. Conclusions that can be drawn from this relatively small patient group are limited because of the number of patients followed and can only be restricted to safety. Yet, data presented may be valuable concerning rates in cancer, retinopathy, MI or strokes following angiogenesis gene therapy in the absence of any long-term data in angiogenesis gene therapy. It may take several years until data from larger patient populations will become available.
Resumo:
Peripheral arterial occlusive disease (PAOD) is a manifestation of systemic atherosclerosis strongly associated with a high risk of cardiovascular morbidity and mortality. In a considerable proportion of patients with PAOD, revascularization either by endovascular means or by open surgery combined with best possible risk factor modification does not achieve limb salvage or relief of ischaemic rest pain. As a consequence, novel therapeutic strategies have been developed over the last two decades aiming to promote neovascularization and remodelling of collaterals. Gene and stem cell therapy are the main directions for clinical investigation concepts. For both, preclinical studies have shown promising results using a wide variety of genes encoding for growth factors and populations of adult stem cells, respectively. As a consequence, clinical trials have been performed applying gene and stem cell-based concepts. However, it has become apparent that a straightforward translation into humans is not possible. While several trials reported relief of symptoms and functional improvement, other trials did not confirm this early promise of efficacy. Ongoing clinical trials with an improved study design are needed to confirm the potential that gene and cell therapy may have and to prevent the gaps in our scientific knowledge that will jeopardize the establishment of angiogenic therapy as an additional medical treatment of PAOD. This review summarizes the experimental background and presents the current status of clinical applications and future perspectives of the therapeutic use of gene and cell therapy strategies for PAOD.
Resumo:
BACKGROUND Assessment of endothelial function of the microvasculature by peripheral arterial tonometry (EndoPAT(®)) has gained increasing popularity in patients with cardiovascular risk factors. Only limited knowledge about its reproducibility in patients with coronary artery disease (CAD) is available. We therefore aimed to quantify reproducibility of EndoPAT(®) parameters in patients with stable CAD. DESIGN EndoPAT(®) measurements were performed repeatedly in 78 male patients (age 66 ± 8 years) with CAD on stable medication. We calculated overall mean, standard deviation (SD), coefficient of variation (CV) and intraclass correlation coefficient (ICC) of the following parameters: reactive hyperemic index (RHI), PAT ratio of the postocclusion period 90-150 s as used for calculation of the RHI (PAT ratio90-150 s) and 90-120 s (PAT ratio90-120 s) as used for the often employed Framingham RHI (F-RHI), as well as PAT ratio of the peak hyperemic response (PAT ratiopeak response). Additionally, least significant changes (LSC) for individual subjects and minimum sample sizes for parallel and cross-over design studies were calculated. RESULTS Mean RHI was 1·84 (SD 0·36). For RHI, PAT ratio90-150 s , PAT ratio90-120 s , and PAT ratiopeak response the CVs were 17·0%, 25·4%, 26·1%, and 25·0%, respectively. The ICCs were 0·45, 0·49, 0·48 and 0·51, respectively, and LSC for RHI was 47·2%. CONCLUSIONS CV of RHI in our population was moderate; however, we consider this precision insufficient to monitor changes in individual patients, as they would need to exceed 47% to show a significant change. Further, the poor ICCs reflect the difficulty of detecting treatment effects in homogenous populations, such as patients with stable CAD.
Resumo:
The role of endothelial progenitor cells (EPCs) in peripheral artery disease (PAD) remains unclear. We hypothesized that EPC mobilization and function play a central role in the development of endothelial dysfunction and directly influence the degree of atherosclerotic burden in peripheral artery vessels. The number of circulating EPCs, defined as CD34(+)/KDR(+) cells, were assessed by flow cytometry in 91 subjects classified according to a predefined sample size of 31 non-diabetic PAD patients, 30 diabetic PAD patients, and 30 healthy volunteers. Both PAD groups had undergone endovascular treatment in the past. As a functional parameter, EPC colony-forming units were determined ex vivo. Apart from a broad laboratory analysis, a series of clinical measures using the ankle-brachial index (ABI), flow-mediated dilatation (FMD) and carotid intima-media thickness (cIMT) were investigated. A significant reduction of EPC counts and proliferation indices in both PAD groups compared to healthy subjects were observed. Low EPC number and pathological findings in the clinical assessment were strongly correlated to the group allocation. Multivariate statistical analysis revealed these findings to be independent predictors of disease appearance. Linear regression analysis showed the ABI to be a predictor of circulating EPC number (p=0.02). Moreover, the functionality of EPCs was correlated by linear regression (p=0.017) to cIMT. The influence of diabetes mellitus on EPCs in our study has to be considered marginal in already disease-affected patients. This study demonstrated that EPCs could predict the prevalence and severity of symptomatic PAD, with ABI as the determinant of the state of EPC populations in disease-affected groups.
Resumo:
A marked suppression of immune function has long been recognized as a major cause of the high morbidity and mortality rate associated with acute measles. As a hallmark of measles virus (MV)-induced immunosuppression, peripheral blood lymphocytes (PBLs) isolated from patients exhibit a significantly reduced capacity to proliferate in response to mitogens, allogens, or recall antigens. In an in vitro system we show that proliferation of naive PBLs [responder cells (RCs)] in response to a variety of stimuli was significantly impaired after cocultivation with MV-infected, UV-irradiated autologous PBLs [presenter cells (PCs)]. We further observed that a 50% reduction in proliferation of RCs could still be observed when the ratio of PC to RC was 1:100. The effect was completely abolished after physical separation of the two populations, which suggests that soluble factors were not involved. Proliferative inhibition of the RCs was observed after short cocultivation with MV-infected cells, which indicates that surface contact between one or more viral proteins and the RC population was required. We identified that the complex of both MV glycoproteins, F and H, is critically involved in triggering MV-induced suppression of mitogen-dependent proliferation, since the effect was not observed (i) using a recombinant MV in which F and H were replaced with vesicular stomatitis virus G or (ii) when either of these proteins was expressed alone. Coexpression of F and H, however, lead to a significant proliferative inhibition in the RC population. Our data indicate that a small number of MV-infected PBLs can induce a general nonresponsiveness in uninfected PBLs by surface contact, which may, in turn, account for the general suppression of immune responses observed in patients with acute measles.
Resumo:
Immunodeficiency typically appears many years after initial HIV infection. This long, essentially asymptomatic period contributes to the transmission of HIV in human populations. In rare instances, clearance of HIV-1 infection has been observed, particularly in infants. There are also reports of individuals who have been frequently exposed to HIV-1 but remain seronegative for the virus, and it has been hypothesized that these individuals are resistant to infection by HIV-1. However, little is known about the mechanism of immune clearance or protection against HIV-1 in these high-risk individuals because it is difficult to directly demonstrate in vivo protective immunity. Although most of these high-risk individuals show an HIV-1-specific cell-mediated immune response using in vitro assays, their peripheral blood lymphocytes (PBLs) are still susceptible to HIV infection in tissue culture. To study this further in vivo, we have established a humanized SCID mouse infection model whereby T-, B-, and natural killer-cell defective SCID/beige mice that have been reconstituted with normal human PBLs can be infected with HIV-1. When the SCID/beige mice were reconstituted with PBLs from two different multiply exposed HIV-1 seronegative individuals, the mice showed resistance to infection by two strains of HIV-1 (macrophage tropic and T cell tropic), although the same PBLs were easily infected in vitro. Mice reconstituted with PBLs from non-HIV-exposed controls were readily infected. When the same reconstituted mice were depleted of human CD8 T cells, however, they became susceptible to HIV-1 infection, indicating that the in vivo protection required CD8 T cells. This provides clear experimental evidence that some multiply exposed, HIV-1-negative individuals have in vivo protective immunity that is CD8 T cell-dependent. Understanding the mechanism of such protective immunity is critical to the design and testing of effective prophylactic vaccines and immunotherapeutic regimens.
Resumo:
Human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTLs) are thought to play a major role in the immune response to HIV infection. The HIV-specific CTL response is much stronger than previously documented in an infectious disease, yet estimates of CTL frequency derived from limiting-dilution analysis (LDA) are relatively low and comparable to other viral infections. Here we show that individual CTL clones specific for peptides from HIV gag and pol gene products are present at high levels in the peripheral blood of three infected patients and that individual CTL clones may represent between 0.2% and 1% of T cells. Previous LDA in one donor had shown a frequency of CTL precursors of 1/8000, suggesting that LDA may underestimate CTL effector frequency. In some donors individual CTL clones persisted in vivo for at least 5 years. In contrast, in one patient there was a switch in CTL usage suggesting that different populations of CTLs can be recruited during infection. These data imply strong stimulation of CTLs, potentially leading some clones to exhaustion.
Resumo:
C-reactive protein (CRP), a normally occurring human plasma protein may become elevated as much as 1,000 fold during disease states involving acute inflammation or tissue damage. Through its binding to phosphorylcholine in the presence of calcium, CRP has been shown to potentiate the activation of complement, stimulate phagocytosis and opsonize certain microorganisms. Utilizing a flow cytometric functional ligand binding assay I have demonstrated that a monocyte population in human peripheral blood and specific human-derived myelomonocytic cell lines reproducibly bind an evolutionarily conserved conformational pentraxin epitope on human CRP through a mechanism that does not involve its ligand, phosphorylcholine. ^ A variety of cell lines at different stages of differentiation were examined. The monocytic cell line, THP-1, bound the most CRP followed by U937 and KG-1a cells. The HL-60 cell line was induced towards either the granulocyte or monocyte pathway with DMSO or PMA, respectively. Untreated HL-60 cells or DMSO-treated cells did not bind CRP while cells treated with PMA showed increased binding of CRP, similar to U-937 cells. T cell and B-cell derived lines were negative. ^ Inhibition studies with Limulin and human SAP demonstrated that the binding site is a conserved pentraxin epitope. The calcium requirement necessary for binding to occur indicated that the cells recognize a conformational form of CRP. Phosphorylcholine did not inhibit the reaction therefore the possibility that CRP had bound to damaged membranes with exposed PC sites was discounted. ^ A study of 81 normal donors using flow cytometry demonstrated that a majority of peripheral blood monocytes (67.9 ± 1.3, mean ± sem) bound CRP. The percentage of binding was normally distributed and not affected by gender, age or ethnicity. Whole blood obtained from donors representing a variety of disease states showed a significant reduction in the level of CRP bound by monocytes in those donors classified with infection, inflammation or cancer. This reduction in monocyte populations binding CRP did not correlate with the concentration of plasma CRP. ^ The ability of monocytes to specifically bind CRP combined with the binding reactivity of the protein itself to a variety of phosphorylcholine containing substances may represent an important bridge between innate and adaptive immunity. ^
Resumo:
BACKGROUND AND AIMS: Although it has become clear that aneurysmal and occlusive arterial disease represent two distinct etiologic entities, it is still unknown whether the two vascular pathologies are prognostically different. We aim to assess the long-term vital prognosis of patients with abdominal aortic aneurysmal disease (AAA) or peripheral artery disease (PAD), focusing on possible differences in survival, prognostic risk profiles and causes of death. METHODS: Patients undergoing elective surgery for isolated AAA or PAD between 2003 and 2011 were retrospectively included. Differences in postoperative survival were determined using Kaplan-Meier and Cox regression analysis. Prognostic risk profiles were also established with Cox regression analysis. RESULTS: 429 and 338 patients were included in the AAA and PAD groups, respectively. AAA patients were older (71.7 vs. 63.3 years, p < 0.001), yet overall survival following surgery did not differ (HR: 1.16, 95% CI: 0.87-1.54). Neither was type of vascular disease associated with postoperative cardiovascular nor cancer-related death. However, in comparison with age- and gender-matched general populations, cardiovascular mortality was higher in PAD than AAA patients (48.3% vs. 17.3%). Survival of AAA and PAD patients was negatively affected by age, history of cancer and renal insufficiency. Additional determinants in the PAD group were diabetes and ischemic heart disease. CONCLUSIONS: Long-term survival after surgery for PAD and AAA is similar. However, overall life expectancy is significantly worse among PAD patients. The contribution of cardiovascular disease towards mortality in PAD patients warrants more aggressive secondary prevention to reduce cardiovascular mortality and improve longevity.
Resumo:
Ngege, Oreochromis esculentus, originally formed the mainstay of the Lake Victoria Region (LVR) fisheries. Together with its indigenous congener O. variabilis, it was displaced from Lakes Victoria and Kyoga of LVR and was found to survive as isolated small populations within the peripheral minor lakes and reservoirs around the two lakes. Displacement of the two LVR indigenous tilapiines was thought to be principally driven by changed lake environment and predation by the introduced Nile perch, but also competition and genetic swamping by the closely related introduced and comparatively more ecologically versatile tilapine species. In a study carried out in the LVR between 1993 and 2003, micro satellites and RAPD markers were used to analyse the remnant populations so as to establish the population structure and extant genetic diversity of O. esculentus. Analyses indicated that the surviving O. esculentus retained a high proportion of genetic diversity with high differentiation between units an indication of genetic exchange between indigenous and introduced Nile tilapia where the two forms co-existed. While this heightened concern for genetic swamping of the remnant population units by the introduced tilapiines it was noteworthy that in a few of the satellite lakes where the O. esculentus was dominant evidence for introgression was weak.
Resumo:
P2X7 receptors play an important role in inflammatory hyperalgesia, but the mechanisms involved in their hyperalgesic role are not completely understood. In this study, we hypothesized that P2X7 receptor activation induces mechanical hyperalgesia via the inflammatory mediators bradykinin, sympathomimetic amines, prostaglandin E2 (PGE2), and pro-inflammatory cytokines and via neutrophil migration in rats. We found that 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate triethylammonium salt (BzATP), the most potent P2X7 receptor agonist available, induced a dose-dependent mechanical hyperalgesia that was blocked by the P2X7 receptor-selective antagonist A-438079 but unaffected by the P2X1,3,2/3 receptor antagonist TNP-ATP. These findings confirm that, although BzATP also acts at both P2X1 and P2X3 receptors, BzATP-induced hyperalgesia was mediated only by P2X7 receptor activation. Co-administration of selective antagonists of bradykinin B1 (Des-Arg(8)-Leu(9)-BK (DALBK)) or B2 receptors (bradyzide), β1 (atenolol) or β2 adrenoceptors (ICI 118,551), or local pre-treatment with the cyclooxygenase inhibitor indomethacin or the nonspecific selectin inhibitor fucoidan each significantly reduced BzATP-induced mechanical hyperalgesia in the rat hind paw. BzATP also induced the release of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1), an effect that was significantly reduced by A-438079. Co-administration of DALBK or bradyzide with BzATP significantly reduced BzATP-induced IL-1β and CINC-1 release. These results indicate that peripheral P2X7 receptor activation induces mechanical hyperalgesia via inflammatory mediators, especially bradykinin, which may contribute to pro-inflammatory cytokine release. These pro-inflammatory cytokines in turn may mediate the contributions of PGE2, sympathomimetic amines and neutrophil migration to the mechanical hyperalgesia induced by local P2X7 receptor activation.