26 resultados para periderm
Resumo:
Pós-graduação em Ciências Biológicas (Botânica) - IBB
Resumo:
Anatomically preserved calamitalean trunks are described from the Permian fossil forests of Chemnitz, Germany, and Tocantins, central-north Brazil. Several trunk bases were found in situ, still rooting in their former substrate or in parautochthonous sediments and revealing multiple organic connections between stems and roots. The new evidence of several free-stemmed Permian calamitaleans from different fossil lagerstatten and different taphonomic modes from the Northern and Southern hemispheres has implications for understanding calamite growth and challenges the universal validity of the reconstruction of rhizome-bearing woody trees. Whereas the stems belong to different species of the widely distributed genus Arthropitys GOEPPERT 1864, among them the generitype A. bistriata (COTTA) emend. RoSSLER, FENG & NOLL 2012 the attached roots represent the largest calamite roots ever found and incorporate a broad spectrum of preservational forms and ontogenetic stages. The latter are represented by the root genera Astromyelon WILLIAMSON 1878, Myriophylloides HICK & CASH 1881 and Asthenomyelon LEISTIKOW 1962 that were evidenced for the first time from Chemnitz, the type locality of Arthropitys and Calamitea (COTTA) emend. ROSSLER & NOLL 2007. Branched, stem-borne, adventitious root systems exhibit similar architectures, arise from different nodes of the lowermost trunks and anchor the trees in' different substrates. Developmental features were analysed in first- to third-order roots, which possess clearly-defined concentric tissue zones: epidermis/periderm, cortex, endodermis and central vascular tissue with or without pith. First-order roots, in particular, show considerable secondary growth. Numerous zones of concentric density variation in the secondary xylem indicate some kind of seasonality in the early Permian environments.
Resumo:
In the present investigation we studied the feeding habits of the fishes associated with aquatic macrophytes in the Rosana Reservoir, southeastern Brazil. Twenty fish species were collected during four field trips, regularly distributed across the dry and wet seasons. Focal snorkeling observations of the fishes were made over a total of six hours. Nine species were present in abundances of more than 1% and, therefore, had their feeding habits analyzed. Hemigrammus marginatus, Roeboides paranensis, Hyphessobrycon eques, Astyanax altiparanae, Serrasalmus spilopleura, and Bryconamericus stramineus were predominantly invertivores, with predominance of aquatic insects (Diptera, Ephemeroptera, and Trichoptera immatures) among their food items. The predominantly algivores were Apareiodon affinis, Serrapinnus notomelas, and Satanoperca pappaterra, with high frequency of filamentous blue-green algae, diatoms, clorophyts, and periderm. The different microhabitat exploitation plus diet composition suggests partitioning of resources and absence of food competition among the most representative fish species in the studied community, indicating the importance of the naturalistic approach to fish ecology studies.
Resumo:
Plant mines are structures with the form of a cavity caused by consumption of host plant tissue by the insect's miner larvae. Plant mines are more common in leaves, but in Cipocereus minensis, a species in which the leaves are modified spines, the miner activity is restricted to the stem. The aim of this paper was to document the morphological and anatomical differences in the infected and uninfected stems of C. minensis due to the feeding habit of the mining agent. Fresh tissue samples of non-mined and mined young stem of C minensis were collected and examined in transverse sections. We hypothesize that the infection begins following mating when the females scratch the surface of the stem or while they feed on fruits and lay eggs, which subsequently develop into larvae, invading the cactus stem. The insect's miner larvae had mostly consumed the parenchyma tissue towards the center of the stem, and periderm formed along the entire path of the insect. This meristematic tissue or "wound periderm" is a common response for compartmentalization to isolate the damaged tissue, in this case the incubating chamber, in which the eggs will be placed. There were no signs of consumption of vascular tissue in the infested samples, further suggesting a compartmentalized infestation. The nest chamber was found in the stem pith region, with periderm surrounding an insect's miner pupa inside identified as a member of the Cerambycidae. The mining insect depends on a host plant to complete the life cycle; however, the nature of this partnership and the long-term effects of the insect on the plant tissue are unknown. The complex mechanisms by which herbivorous insects control the morphogenesis of the plant host are discussed. We propose that C. minensis has a recognition system to identify insect attack and evaluate the effectiveness of early response triggering compartmentalized defense mechanisms by protecting the injured area with a new layer of periderm.
Resumo:
Conidial germination of Botryosphaeria dothidea (anamorph: Fusicoccum) in sterile distilled water and 1% sterile dextrose solution was evaluated at 4, 6, 12, 24 and 36 h after incubation. Also, it was described the anatomical changes on pitahaya stems induced by this fungus, collected in the field and artificially inoculated in the laboratory. Conidial germination was less than 30% in water and it was improved when 1% dextrose was added to the water. In 1% dextrose solution the germination was 90% after 4h of incubation and 100% at 6 h. Pathogen germ tubes had entered through wounds and sometimes through stomata and hyphae colonized intra and intercellularly in the parenchyma-chlorenchyma tissues. On naturally and artificially diseased stems the main alterations were: destruction of cuticle, hyperplasia of epidermal and collenchymatous hypodermal cells and conform the advance of the pathogen a layer of lignified periderm was formed surrounding the damaged tissues; however, it couldn't stop the advance of the pathogen and the cells that surrounded the lesion suffered necrosis.
Resumo:
We use pollen, stomata and plant-macrofossil records to infer Holocene timberline fluctuations and changes in forest composition at Lac Superieur de Fully (2135 m a.s.l.), a small lake located near the modern regional timberline on a highland plateau in the Central Alps. Our records suggest that during the early Holocene vegetation was rather open on the plateau (eg, heaths of Dryas octopetala, Juniperus nana). The only tree that was able to build major stands was Betula. Other timberline trees (eg, Pinus cembra and Larix) expanded in the catchment of the lake after 8200 cal. BP, when Abies alba expanded at lower elevation. The late appearance of these timberline trees contrasts with previous plant-macrofossil records in the region, which show that the timberline had reached elevations up to at least 2350 m already at 11 000 cal. BP. We suggest that local climatic conditions may have delayed the expansion of closed stands of coniferous trees in the catchment of Lac de Fully until c. 8200 cal. BP, when climate shifted to more humid and less continental conditions. After c. 4600 cal. BP vegetation around the lake primarily responded to human impact, which caused a local lowering of the timberline by at least 150 m.
Resumo:
Vast areas on the Tibetan Plateau are covered by alpine sedge mats consisting of different species of the genus Kobresia. These mats have topsoil horizons rich in rhizogenic organic matter which creates turfs. As the turfs have recently been affected by a complex destruction process, knowledge concerning their soil properties, age and pedogenesis are needed. In the core area of Kobresia pygmaea mats around Nagqu (central Tibetan Plateau, ca. 4500 m a.s.l.), four profiles were subjected to pedological, paleobotanical and geochronological analyses concentrating on soil properties, phytogenic composition and dating of the turf. The turf of both dry K. pygmaea sites and wet Kobresia schoenoides sites is characterised by an enrichment of living (dominant portion) and dead root biomass. In terms of humus forms, K. pygmaea turfs can be classified as Rhizomulls mainly developed from Cambisols. Wet-site K. schoenoides turfs, however, can be classified as Rhizo-Hydromors developed from Histic Gleysols. At the dry sites studied, the turnover of soil organic matter is controlled by a non-permafrost cold thermal regime. Below-ground remains from sedges are the most frequent macroremains in the turf. Only a few pollen types of vascular plants occur, predominantly originating from sedges and grasses. Large amounts of microscopic charcoal (indeterminate) are present. Macroremains and pollen extracted from the turfs predominantly have negative AMS 14C ages, giving evidence of a modern turf genesis. Bulk-soil datings from the lowermost part of the turfs have a Late Holocene age comprising the last ca. 2000 years. The development of K. pygmaea turfs was most probably caused by an anthropo(zoo)-genetically initiated growth of sedge mats replacing former grass-dominated vegetation ('steppe'). Thus the turfs result from the transformation of pre-existing topsoils comprising a secondary penetration and accumulation of roots. K. schoenoides turfs, however, are characterised by a combined process of peat formation and penetration/accumulation of roots probably representing a (quasi) natural wetland vegetation.
Resumo:
Carbon distribution in the stem of 2-year-old cork oak plants was studied by 14CO2 pulse labeling in late spring in order to trace the allocation of photoassimilates to tissue and biochemical stem components of cork oak. The fate of 14C photoassimilated carbon was followed during two periods: the first 72 h (short-term study) and the first 52 weeks (long-term study) after the 14CO2 photosynthetic assimilation. The results showed that 14C allocation to stem tissues was dependent on the time passed since photoassimilation and on the season of the year. In the first 3 h all 14C was found in the polar extractives. After 3 h, it started to be allocated to other stem fractions. In 1 day, 14C was allocated mostly to vascular cambium and, to a lesser extent, to primary phloem; no presence of 14C was recorded for the periderm. However, translocation of 14C to phellem was observed from 1 week after 14CO2 pulse labeling. The phellogen was not completely active in its entire circumference at labeling, unlike the vascular cambium; this was the tissue that accumulated most photoassimilated 14C at the earliest sampling. The fraction of leaf-assimilated 14C that was used by the stem peaked at 57% 1 week after 14CO2 plant exposure. The time lag between C photoassimilation and suberin accumulation was ∼8 h, but the most active period for suberin accumulation was between 3 and 7 days. Suberin, which represented only 1.77% of the stem weight, acted as a highly effective sink for the carbon photoassimilated in late spring since suberin specific radioactivity was much higher than for any other stem component as early as only 1 week after 14C plant labeling. This trend was maintained throughout the whole experiment. The examination of microautoradiographs taken over 1 year provided a new method for quantifying xylem growth. Using this approach it was found that there was more secondary xylem growth in late spring than in other times of the year, because the calculated average cell division time was much shorter.
Resumo:
The monomer composition of the esterified part of suberin can be determined using gas chromatography-mass spectroscopy technology and is accordingly believed to be well known. However, evidence was presented recently indicating that the suberin of green cotton (Gossypium hirsutum cv Green Lint) fibers contains substantial amounts of esterified glycerol. This observation is confirmed in the present report by a sodium dodecyl sulfate extraction of membrane lipids and by a developmental study, demonstrating the correlated accumulation of glycerol and established suberin monomers. Corresponding amounts of glycerol also occur in the suberin of the periderm of cotton stems and potato (Solanum tuberosum) tubers. A periderm preparation of wound-healing potato tuber storage parenchyma was further purified by different treatments. As the purification proceeded, the concentration of glycerol increased at about the same rate as that of α,ω-alkanedioic acids, the most diagnostic suberin monomers. Therefore, it is proposed that glycerol is a monomer of suberins in general and can cross-link aliphatic and aromatic suberin domains, corresponding to the electron-translucent and electron-opaque suberin lamellae, respectively. This proposal is consistent with the reported dimensions of the electron-translucent suberin lamellae.
Resumo:
Changes in polymerized actin during stress conditions were correlated with potato (Solanum tuberosum L.) tuber protein synthesis. Fluorescence microscopy and immunoblot analyses indicated that filamentous actin was nearly undetectable in mature, quiescent aerobic tubers. Mechanical wounding of postharvest tubers resulted in a localized increase of polymerized actin, and microfilament bundles were visible in cells of the wounded periderm within 12 h after wounding. During this same period translational activity increased 8-fold. By contrast, low-oxygen stress caused rapid reduction of polymerized actin coincident with acute inhibition of protein synthesis. Treatment of aerobic tubers with cytochalasin D, an agent that disrupts actin filaments, reduced wound-induced protein synthesis in vivo. This effect was not observed when colchicine, an agent that depolymerizes microtubules, was used. Neither of these drugs had a significant effect in vitro on run-off translation of isolated polysomes. However, cytochalasin D did reduce translational competence in vitro of a crude cellular fraction containing both polysomes and cytoskeletal elements. These results demonstrate the dependence of wound-induced protein synthesis on the integrity of microfilaments and suggest that the dynamics of the actin cytoskeleton may affect translational activity during stress conditions.