918 resultados para patient specific QA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional reconstruction from volumetric medical images (e.g. CT, MRI) is a well-established technology used in patient-specific modelling. However, there are many cases where only 2D (planar) images may be available, e.g. if radiation dose must be limited or if retrospective data is being used from periods when 3D data was not available. This study aims to address such cases by proposing an automated method to create 3D surface models from planar radiographs. The method consists of (i) contour extraction from the radiograph using an Active Contour (Snake) algorithm, (ii) selection of a closest matching 3D model from a library of generic models, and (iii) warping the selected generic model to improve correlation with the extracted contour.

This method proved to be fully automated, rapid and robust on a given set of radiographs. Measured mean surface distance error values were low when comparing models reconstructed from matching pairs of CT scans and planar X-rays (2.57–3.74 mm) and within ranges of similar studies. Benefits of the method are that it requires a single radiographic image to perform the surface reconstruction task and it is fully automated. Mechanical simulations of loaded bone with different levels of reconstruction accuracy showed that an error in predicted strain fields grows proportionally to the error level in geometric precision. In conclusion, models generated by the proposed technique are deemed acceptable to perform realistic patient-specific simulations when 3D data sources are unavailable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for the construction of a patient-specific model of a scoliotic torso for surgical planning via inter- patient registration is presented. Magnetic Resonance Images (MRI) of a generic model are registered to surface topography (TP) and X-ray data of a test patient. A partial model is first obtained via thin-plate spline registration between TP and X-ray data of the test patient. The MRIs from the generic model are then fit into the test patient using articulated model registration between the vertebrae of the generic model’s MRIs in prone position and the test patient’s X-rays in standing position. A non-rigid deformation of the soft tissues is performed using a modified thin-plate spline constrained to maintain bone rigidity and to fit in the space between the vertebrae and the surface of the torso. Results show average Dice values of 0.975 ± 0.012 between the MRIs following inter-patient registration and the surface topography of the test patient, which is comparable to the average value of 0.976 ± 0.009 previously obtained following intra-patient registration. The results also show a significant improvement compared to rigid inter-patient registration. Future work includes validating the method on a larger cohort of patients and incorporating soft tissue stiffness constraints. The method developed can be used to obtain a geometric model of a patient including bone structures, soft tissues and the surface of the torso which can be incorporated in a surgical simulator in order to better predict the outcome of scoliosis surgery, even if MRI data cannot be acquired for the patient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are many ways to generate geometrical models for numerical simulation, and most of them start with a segmentation step to extract the boundaries of the regions of interest. This paper presents an algorithm to generate a patient-specific three-dimensional geometric model, based on a tetrahedral mesh, without an initial extraction of contours from the volumetric data. Using the information directly available in the data, such as gray levels, we built a metric to drive a mesh adaptation process. The metric is used to specify the size and orientation of the tetrahedral elements everywhere in the mesh. Our method, which produces anisotropic meshes, gives good results with synthetic and real MRI data. The resulting model quality has been evaluated qualitatively and quantitatively by comparing it with an analytical solution and with a segmentation made by an expert. Results show that our method gives, in 90% of the cases, as good or better meshes as a similar isotropic method, based on the accuracy of the volume reconstruction for a given mesh size. Moreover, a comparison of the Hausdorff distances between adapted meshes of both methods and ground-truth volumes shows that our method decreases reconstruction errors faster. Copyright © 2015 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Accurate three-dimensional (3D) models of lumbar vertebrae can enable image-based 3D kinematic analysis. The common approach to derive 3D models is by direct segmentation of CT or MRI datasets. However, these have the disadvantages that they are expensive, timeconsuming and/or induce high-radiation doses to the patient. In this study, we present a technique to automatically reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image. Methods Our technique is based on a hybrid 2D/3D deformable registration strategy combining a landmark-to-ray registration with a statistical shape model-based 2D/3D reconstruction scheme. Fig. 1 shows different stages of the reconstruction process. Four cadaveric lumbar spine segments (total twelve lumbar vertebrae) were used to validate the technique. To evaluate the reconstruction accuracy, the surface models reconstructed from the lateral fluoroscopic images were compared to the associated ground truth data derived from a 3D CT-scan reconstruction technique. For each case, a surface-based matching was first used to recover the scale and the rigid transformation between the reconstructed surface model Results Our technique could successfully reconstruct 3D surface models of all twelve vertebrae. After recovering the scale and the rigid transformation between the reconstructed surface models and the ground truth models, the average error of the 2D/3D surface model reconstruction over the twelve lumbar vertebrae was found to be 1.0 mm. The errors of reconstructing surface models of all twelve vertebrae are shown in Fig. 2. It was found that the mean errors of the reconstructed surface models in comparison to their associated ground truths after iterative scaled rigid registrations ranged from 0.7 mm to 1.3 mm and the rootmean squared (RMS) errors ranged from 1.0 mm to 1.7 mm. The average mean reconstruction error was found to be 1.0 mm. Conclusion An accurate, scaled 3D reconstruction of the lumbar vertebra can be obtained from a single lateral fluoroscopic image using a statistical shape model based 2D/3D reconstruction technique. Future work will focus on applying the reconstructed model for 3D kinematic analysis of lumbar vertebrae, an extension of our previously-reported imagebased kinematic analysis. The developed method also has potential applications in surgical planning and navigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cranioplasty is a commonly performed procedure. Outcomes can be improved by the use of patient specific implants, however, high costs limit their accessibility. This paper presents a low cost alternative technique to create patient specific polymethylmethacrylate (PMMA) implants using rapid prototyped mold template. We used available patient's CT-scans, one dataset without craniotomy and one with craniotomy, for computer-assisted design of a 3D mold template, which itself can be brought into the operating room and be used for fast and easy building of a PMMA implant. We applied our solution to three patients with positive outcomes and no complications.