988 resultados para particle-laden flow
Resumo:
Background: Urine is still the matrix of choice to fight against doping, because it can be collected non-invasively during anti-doping tests. Most of the World Anti-Doping Agency's accredited laboratories have more than 20 years experience in analyzing this biological fluid and the majority of the compounds listed in the 2010 Prohibited List - International Standard are eliminated through the urinary apparatus. Storing and transporting urine samples for doping analyses does not include a specific protocol to prevent microbial and thermal degradation. The use of a rapid and reliable screening method could enable determine reference intervals for urine specimens in doping control samples and evaluate notably the prevalence of microbial contamination known to be responsible for the degradation of chemical substances in urine.Methods: The Sysmex(R) UF-500i is a recent urine flow cytometer analyzer capable of quantifying BACT and other urinary particles such as RBC, WBC, EC, DEBRIS, CAST, PATH. CAST, YLC, SRC as well as measuring urine conductivity. To determine urine anti-doping reference intervals, 501 samples received in our laboratory over a period of two months were submitted to an immediate examination. All samples were collected and then transported at room temperature. Analysis of variance was performed to test the effects of factors such as gender, test type [in-competition, out-of-competition] and delivery time.Results: The data obtained showed that most of the urine samples were highly contaminated with bacteria. The other urine particles were also very different according to the factors.Conclusions: The Sysmex(R) UF-500i was capable of providing a snapshot of urine particles present in the samples at the time of the delivery to the laboratory. These particles, BACT in particular, gave a good idea of the possible microbial degradation which had and/or could have occurred in the sample. This information could be used as the first quality control set up in WADA (World Anti-Doping Agency) accredited laboratories to determine if steroid profiles, endogenous and prohibited substances have possibly been altered. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed 'flushing', that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.
Resumo:
Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a fixed measurement location may not represent the true evolution if there are spatial variations in the formation and growth rates. Here we present a zero-dimensional aerosol box model coupled with one-dimensional atmospheric flow to describe the impact of advection on the evolution of simulated new particle formation events. Wind speed, particle formation rates and growth rates are input parameters that can vary as a function of time and location, using wind speed to connect location to time. The output simulates measurements at a fixed location; formation and growth rates of the particle mode can then be calculated from the simulated observations at a stationary point for different scenarios and be compared with the ‘true’ input parameters. Hence, we can investigate how spatial variations in the formation and growth rates of new particles would appear in observations of particle number size distributions at a fixed measurement site. We show that the particle size distribution and growth rate at a fixed location is dependent on the formation and growth parameters upwind, even if local conditions do not vary. We also show that different input parameters used may result in very similar simulated measurements. Erroneous interpretation of observations in terms of particle formation and growth rates, and the time span and areal extent of new particle formation, is possible if the spatial effects are not accounted for.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The U.S. Geological Survey (USGS) is committed to providing the Nation with credible scientific information that helps to enhance and protect the overall quality of life and that facilitates effective management of water, biological, energy, and mineral resources (http://www.usgs.gov/). Information on the Nation’s water resources is critical to ensuring long-term availability of water that is safe for drinking and recreation and is suitable for industry, irrigation, and fish and wildlife. Population growth and increasing demands for water make the availability of that water, now measured in terms of quantity and quality, even more essential to the long-term sustainability of our communities and ecosystems. The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support national, regional, State, and local information needs and decisions related to water-quality management and policy (http://water.usgs.gov/nawqa). The NAWQA Program is designed to answer: What is the condition of our Nation’s streams and ground water? How are conditions changing over time? How do natural features and human activities affect the quality of streams and ground water, and where are those effects most pronounced? By combining information on water chemistry, physical characteristics, stream habitat, and aquatic life, the NAWQA Program aims to provide science-based insights for current and emerging water issues and priorities. From 1991-2001, the NAWQA Program completed interdisciplinary assessments and established a baseline understanding of water-quality conditions in 51 of the Nation’s river basins and aquifers, referred to as Study Units (http://water.usgs.gov/nawqa/studyu.html).
Resumo:
We present STAR measurements of azimuthal anisotropy by means of the two- and four-particle cumulants nu(2) (nu(2){2} and nu(2){4}) for Au + Au and Cu + Cu collisions at center-of-mass energies root S-NN = 62.4 and 200 GeV. The difference between nu(2){2}(2) and nu(2){4}(2) is related to nu(2) fluctuations (sigma(nu 2)) and nonflow (delta(2)). We present an upper limit to sigma(nu 2)/nu 2. Following the assumption that eccentricity fluctuations sigma(epsilon) dominate nu(2) fluctuations nu(2)/sigma nu(2) approximate to epsilon/sigma epsilon we deduce the nonflow implied for several models of eccentricity fluctuations that would be required for consistency with nu(2){2} and nu(2){4}. We also present results on the ratio of nu(2) to eccentricity.
Resumo:
In the austral summer seasons 2001/02 and 2002/03, Global Positioning System (GPS) data were collected in the vicinity of Vostok Station to determine ice flow velocities over Lake Vostok. Ten GPS sites are located within a radius of 30 km around Vostok Station on floating ice as well as on grounded ice to the east and to the west of the lake. Additionally, a local deformation network around the ice core drilling site 5G-1 was installed. The derived ice flow velocity for Vostok Station is 2.00 m/a ± 0.01 m/a. Along the flowline of Vostok Station an extension rate of about 10**-5/a (equivalent to 1 cm/km/a) was determined. This significant velocity gradient results in a new estimate of 28700 years for the transit time of an ice particle along the Vostok flowline from the bedrock ridge in the southwest of the lake to the eastern shoreline. With these lower velocities compared to earlier studies and, hence, larger transit times the basal accretion rate is estimated to be 4 mm/a along a portion of the Vostok flowline. An assessment of the local accretion rate at Vostok Station using the observed geodetic quantities yields an accretion rate in the same order of magnitude. Furthermore, the comparison of our geodetic observations with results inferred from ice-penetrating radar data indicates that the ice flow may not have changed significantly for several thousand years.
Resumo:
A hybrid Eulerian-Lagrangian approach is employed to simulate heavy particle dispersion in turbulent pipe flow. The mean flow is provided by the Eulerian simulations developed by mean of JetCode, whereas the fluid fluctuations seen by particles are prescribed by a stochastic differential equation based on normalized Langevin. The statistics of particle velocity are compared to LES data which contain detailed statistics of velocity for particles with diameter equal to 20.4 µm. The model is in good agreement with the LES data for axial mean velocity whereas rms of axial and radial velocities should be adjusted.
Resumo:
In this work, we use large eddy simulations (LES) and Lagrangian tracking to study the influence of gravity on particle statistics in a fully developed turbulent upward/downward flow in a vertical channel and pipe at matched Kàrmàn number. Only drag and gravity are considered in the equation of motion for solid particles, which are assumed to have no influence on the flow field. Particle interactions with the wall are fully elastic. Our findings obtained from the particle statistics confirm that: (i) the gravity seems to modify both the quantitative and qualitative behavior of the particle distribution and statistics of the particle velocity in wall normal direction; (ii) however, only the quantitative behavior of velocity particle in streamwise direction and the root mean square of velocity components is modified; (iii) the statistics of fluid and particles coincide very well near the wall in channel and pipe flow with equal Kàrmàn number; (iv) pipe curvature seems to have quantitative and qualitative influence on the particle velocity and on the particle concentration in wall normal direction.
Resumo:
The investigation of insulation debris generation, transport and sedimentation becomes more important with regard to reactor safety research for pressurized and boiling water reactors, when considering the long-term behaviour of emergency core coolant systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of a disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb or impinge on the emergency core cooling systems. Open questions of generic interest are for example the particle load on strainers and corresponding pressure-drop, the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow. A joint research project on such questions is being performed in cooperation with the University of Applied Science Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation and the development of computational fluid dynamic (CFD) models for the description of particle transport phenomena in coolant flow. While the experiments are performed at the University Zittau/Görlitz, the theoretical work is concentrated at Forschungszentrum Dresden-Rossendorf. In the present paper, the basic concepts for computational fluid dynamic (CFD) modelling are described and experimental results are presented. Further experiments are designed and feasibility studies were performed.
Resumo:
Investigations of chaotic particle transport by drift waves propagating in the edge plasma of tokamaks with poloidal zonal flow are described. For large aspect ratio tokamaks, the influence of radial electric field profiles on convective cells and transport barriers, created by the nonlinear interaction between the poloidal flow and resonant waves, is investigated. For equilibria with edge shear flow, particle transport is seen to be reduced when the electric field shear is reversed. The transport reduction is attributed to the robust invariant tori that occur in nontwist Hamiltonian systems. This mechanism is proposed as an explanation for the transport reduction in Tokamak Chauffage Alfven Bresilien [R. M. O. Galvao , Plasma Phys. Controlled Fusion 43, 1181 (2001)] for discharges with a biased electrode at the plasma edge.
Resumo:
We present inclusive charged hadron elliptic flow (v(2)) measured over the pseudorapidity range vertical bar eta vertical bar < 0.35 in Au+Au collisions at s(NN)=200 GeV. Results for v(2) are presented over a broad range of transverse momentum (p(T)=0.2-8.0 GeV/c) and centrality (0-60%). To study nonflow effects that are correlations other than collective flow, as well as the fluctuations of v(2), we compare two different analysis methods: (1) the event-plane method from two independent subdetectors at forward (vertical bar eta vertical bar=3.1-3.9) and beam (vertical bar eta vertical bar>6.5) pseudorapidities and (2) the two-particle cumulant method extracted using correlations between particles detected at midrapidity. The two event-plane results are consistent within systematic uncertainties over the measured p(T) and in centrality 0-40%. There is at most a 20% difference in the v(2) between the two event-plane methods in peripheral (40-60%) collisions. The comparisons between the two-particle cumulant results and the standard event-plane measurements are discussed.
Resumo:
The effects of fluctuating initial conditions are studied in the context of relativistic heavy ion collisions where a rapidly evolving system is formed. Two-particle correlation analysis is applied to events generated with the NEXSPHERIO hydrodynamic code, starting with fluctuating nonsmooth initial conditions (IC). The results show that the nonsmoothness in the IC survives the hydroevolution and can be seen as topological features of the angular correlation function of the particles emerging from the evolving system. A long range correlation is observed in the longitudinal direction and in the azimuthal direction a double peak structure is observed in the opposite direction to the trigger particle. This analysis provides clear evidence that these are signatures of the combined effect of tubular structures present in the IC and the proceeding collective dynamics of the hot and dense medium.
Resumo:
We show the effects of the granular structure of the initial conditions of a hydrodynamic description of high-energy nucleus-nucleus collisions on some observables, especially on the elliptic-flow parameter upsilon(2). Such a structure enhances production of isotropically distributed high-p(T) particles, making upsilon(2) smaller there. Also, it reduces upsilon(2) in the forward and backward regions where the global matter density is smaller and, therefore, where such effects become more efficacious.