986 resultados para parasitic nematode
MEMBRANE FRACTIONS FROM Strongyloides venezuelensis IN THE IMMUNODIAGNOSIS OF HUMAN STRONGYLOIDIASIS
Resumo:
Strongyloides venezuelensis is a parasitic nematode of rodents frequently used to obtain heterologous antigens for the immunological diagnosis of human strongyloidiasis. The aim of this study was to evaluate membrane fractions from S. venezuelensis for human strongyloidiasis immunodiagnosis. Soluble and membrane fractions were obtained in phosphate saline (SS and SM) and Tris-HCl (TS and TM) from filariform larvae of S. venezuelensis. Ninety-two serum samples (n = 92) were obtained from 20 strongyloidiasis patients (Group I), 32 from patients with other parasitic diseases (Group II), and 40 from healthy individuals (Group III), and were analyzed by enzyme-linked immunosorbent assay (ELISA). Soluble fractions (SS and TS) showed 90.0% sensitivity and 88.9% specificity, whereas the membrane fractions (SM and TM) showed 95.0% sensitivity and 94.4% specificity. The present results suggest the possible use of membrane fractions of S. venezuelensis as an alternative antigen for human strongyloidiasis immunodiagnosis.
Resumo:
Human accidental infection with Angiostrongylus costaricensis may result in abdominal disease of varied severity. Slugs from the Veronicellidae family are the main intermediate hosts for this parasitic nematode of rodents. Phyllocaulis variegatus, Phyllocaulis soleiformis and Phyllocaulis boraceiensis were experimentally infected to describe the kinetics of L3 elimination in the mucus secretions of those veronicelid species. A maximum of 2 L3/g/day was found in the mucus, while the number of L3 isolated from the fibromuscular tissues varied from 14 to 448. Productive infection was established by inoculations in the hyponotum or in the body cavity, through the tegument. Intra-cavity injection is a less complex procedure and permits a better control of inocula. A preliminary trial to titrate the infective dosis for P. variegatus indicated that inocula should range between 1000 and 5000 L1. The data also confirmed the importance of P. variegatus as an intermediate host of A. costaricensis.
Resumo:
Lagochilascaris minor Leiper, 1909 is a parasitic nematode with its biological cycle still unknown, even though it was found in humans, domestic and silvatic animals. Adult worms, collected by surgical drainage from a human patient from the State of Pará, Brazil, were micrographed using a scanning electron microscope. Morphological aspects of males and females such as cephalic structures, caudal papillae and cuticular patterns were analyzed and compared with the previous descriptions adding new data for the identification of this species.
Resumo:
Data obtained between 1990 and 1995 provide, for the first time, ecological information of the parasitic nematode Travassosnema travassosi travassosi Costa, Moreira & Oliveira, 1991 from Acestrorhynchus lacustris (Characiformes: Acestrorhynchidae) collected in the Tibagi River, Sertanópolis, Paraná, Brazil. These nematode occurred with low prevalences (7.7% to 28.6%) and intensities (1 to 3) during almost the whole year. The observation of mature females throughout the year indicate that liberation of larvae can occur during all the year around. This is the first report on the occurrence of T. travassosi travassosi inside the eyes. These nematodes were mostly located in humour of the eyes (87% of cases), being less frequently detected in tissues behind the eyes (13% of cases).
Resumo:
Life tables were constructed for six cohorts of immature stages of the floodwater mosquito Ochlerotatus albifasciatus (Macquart) in a park in Buenos Aires, highlighting the mortality attributable to the parasitic nematode, Strelkovimermis spiculatus Poinar & Camino. Two cohorts were selected to compare parasite incidence in all mosquito stages when low and high parasitism occurred. Development time of Oc. albifasciatus from first instar to adult was 7.7-10 days in the spring, 6 days in the summer, and 10.9-21.9 days in the fall. Survival was estimated as 0-1.4% in the spring, 2% in the summer and 0.2-4.4% in the fall. The highest "K" value (Killing power) occurred during a fall cohort when prevalence of the parasite was 86.9%, and the lowest in a spring cohort. Parasitism occurred during all seasons, but S. spiculatus persisted to adult only in the summer and fall, when adult mosquitoes developed from parasitized third and fourth instars larvae. The abundance of S. spiculatus differed between old and young larvae only when parasite prevalence was the highest. Although pupae and adults of Oc. albifasciatus were parasitized, no pupal mortality attributable to parasitism was recorded. The proportion of parasitized adults ranged from 14.2% and 5.7% in the two cohorts compared. Pupal wet weight and adult wing lengths did not differ between parasitized and unparasitized individuals.
Resumo:
Specimens of Spinitectus osorioi Choudhury and Pérez-Ponce de León, an intestinal nematode species previously considered to be specific to Chirostoma spp and endemic to some lakes in the Pacific drainage in Michoacán, were collected from the freshwater fish Atherinella alvarezi (Díaz-Pardo) (Atherinopsidae) of the Michol River near Palenque, Chiapas, Southern Mexico, which belongs to the Atlantic drainage system. Studies using light and scanning electron microscopy revealed some taxonomically important, previously unreported or erroneously reported features of S. osorioi, such as the location of the vulva, the actual number and distribution of postanal papillae and phasmids and the presence of a short median cuticular ridge anterior to the cloacal opening (in addition to two long subventral ridges). The recorded somewhat shorter spicules (420-465 and 105-111 μm) and mostly smaller eggs (33-36 × 18-20 μm) as compared to the original species description may be due to a different type of host, geographical region or generally smaller body measurements of these specimens. These biometrical differences are considered to be within the limits of the intraspecific variability of S. osorioi. A key to species of Spinitectus parasitizing freshwater fishes in Mexico is provided.
Resumo:
BACKGROUND: Filarial nematodes, including Brugia malayi, the causative agent of lymphatic filariasis, undergo molting in both arthropod and mammalian hosts to complete their life cycles. An understanding of how these parasites cross developmental checkpoints may reveal potential targets for intervention. Pharmacological evidence suggests that ecdysteroids play a role in parasitic nematode molting and fertility although their specific function remains unknown. In insects, ecdysone triggers molting through the activation of the ecdysone receptor: a heterodimer of EcR (ecdysone receptor) and USP (Ultraspiracle). METHODS AND FINDINGS: We report the cloning and characterization of a B. malayi EcR homologue (Bma-EcR). Bma-EcR dimerizes with insect and nematode USP/RXRs and binds to DNA encoding a canonical ecdysone response element (EcRE). In support of the existence of an active ecdysone receptor in Brugia we also cloned a Brugia rxr (retinoid X receptor) homolog (Bma-RXR) and demonstrate that Bma-EcR and Bma-RXR interact to form an active heterodimer using a mammalian two-hybrid activation assay. The Bma-EcR ligand-binding domain (LBD) exhibits ligand-dependent transactivation via a GAL4 fusion protein combined with a chimeric RXR in mammalian cells treated with Ponasterone-A or a synthetic ecdysone agonist. Furthermore, we demonstrate specific up-regulation of reporter gene activity in transgenic B. malayi embryos transfected with a luciferase construct controlled by an EcRE engineered in a B. malayi promoter, in the presence of 20-hydroxy-ecdysone. CONCLUSIONS: Our study identifies and characterizes the two components (Bma-EcR and Bma-RXR) necessary for constituting a functional ecdysteroid receptor in B. malayi. Importantly, the ligand binding domain of BmaEcR is shown to be capable of responding to ecdysteroid ligands, and conversely, ecdysteroids can activate transcription of genes downstream of an EcRE in live B. malayi embryos. These results together confirm that an ecdysone signaling system operates in B. malayi and strongly suggest that Bma-EcR plays a central role in it. Furthermore, our study proposes that existing compounds targeting the insect ecdysone signaling pathway should be considered as potential pharmacological agents against filarial parasites.
Resumo:
Certain strains of Pantoea are used as biocontrol agents for the suppression of plant diseases. However, their commercial registration is hampered in some countries because of biosafety concerns. This study compares clinical and plant-beneficial strains of P. agglomerans and related species using a phenotypic analysis approach in which plant-beneficial effects, adverse effects in nematode models, and toxicity were evaluated. Plant-beneficial effects were determined as the inhibition of apple fruit infection by Penicillium expansum and apple flower infection by Erwinia amylovora. Clinical strains had no general inhibitory activity against infection by the fungal or bacterial plant pathogens, as only one clinical strain inhibited P. expansum and three inhibited E. amylovora. By contrast, all biocontrol strains showed activity against at least one of the phytopathogens, and three strains were active against both. The adverse effects in animals were evaluated in the plant-parasitic nematode Meloidogyne javanica and the bacterial-feeding nematode Caenorhabditis elegans. Both models indicated adverse effects of the two clinical strains but not of any of the plant-beneficial strains. Toxicity was evaluated by means of hemolytic activity in blood, and genotoxicity with the Ames test. None of the strains, whether clinical or plant-beneficial, showed any evidence of toxicity
Resumo:
In a previous study, substances with nematicidal properties were detected in the bark of Cryptocarya aschersoniana. Continuing such study, the methanol extract from this plant underwent fractionation guided by in vitro assays with the plant-parasitic nematode Meloidogyne exigua. Two active compounds were isolated and identified by spectroscopic methods as (E)-6-styrylpyran-2-one and (R)-goniothalamin. The latter compound was also active againstMeloidogyne incognita. In silico studies carried out with (R)-goniothalamin and the enzyme fumarate hydratase, which was extracted from the genome of Meloidogyne hapla and modeled using computational methods, suggested that this substance acts against nematodes by binding to a cavity close to the active site of the enzyme.
Resumo:
Les toxines Cry sont des protéines synthétisées sous forme de cristaux par la bactérie bacille de Thuringe pendant la sporulation. Elles sont largement utilisées comme agents de lutte biologique, car elles sont toxiques envers plusieurs espèces d’invertébrées, y compris les nématodes. Les toxines Cry5B sont actives contre certaines espèces de nématodes parasites, y compris Ankylostoma ceylanicum un parasite qui infeste le système gastro-intestinal des humains. Jusqu’au présent, le mode d’action des toxines Cry nématicides reste grandement inconnu, sauf que leurs récepteurs spécifiques sont des glycolipides et qu’elles causent des dommages importants aux cellules intestinales. Dans cette étude, on démontre pour la première fois que la toxine nématicide Cry5Ba, membre de la famille des toxines à trois domaines et produite par la bactérie bacille de Thuringe, forme des pores dans les bicouches lipidiques planes en absence de récepteurs. Les pores formés par cette toxine sont de sélectivité cationique, à pH acide ou alcalin. Les conductances des pores formés sous conditions symétriques de 150 mM de KCl varient entre 17 et 330 pS, à pH 6.0 et 9.0. Les niveaux des conductances les plus fréquemment observés diffèrent les uns des autres par environ 17 à 18 pS, ce qui est compatible avec l’existence d’arrangement d’un nombre différent de pores élémentaires similaires, activés de façon synchronisée, ou avec la présence d’oligomères de tailles variables et de différents diamètres de pores.
Resumo:
Proanthocyanidins (PA) from shea (Vitellaria paradoxa) meal were investigated by thiolytic degradation with benzyl mercaptan and the reaction products were analysed by high performance liquid chromatography–mass spectrometry. These PA were galloylated (≈40%), contained only B-type linkages and had a high proportion of prodelphinidins (>70%). The mean degree of polymerisation was 8 (i.e. average molecular size was 2384 Da) and epigallocatechin gallate (EGCg) was the major flavan-3-ol subunit in PA. Shea meal also proved to be a potentially valuable source for extracting free flavan-3-ol-O-gallates, especially EGCg (575 mg/kg meal), which is known for its health and anti-parasitic benefits. Proanthocyanidins were isolated and tested for bioactivity against Ascaris suum, which is an important parasite of pigs. Migration and motility tests revealed that these PA have potent activity against this parasitic nematode.
Resumo:
Proanthocyanidins (PAC) are a class of plant secondary metabolites commonly found in the diet that have shown potential to control gastrointestinal nematode infections. The anti-parasitic mechanism(s) of PAC remain obscure, however the protein-binding properties of PAC suggest that disturbance of key enzyme functions may be a potential mode of action. Glutathione-S-transferases (GSTs) are essential for parasite detoxification and have been investigated as drug and vaccine targets. Here, we show that purified PAC strongly inhibit the activity of both recombinant and native GSTs from the parasitic nematode Ascaris suum. As GSTs are involved in detoxifying xenobiotic substances within the parasite, we hypothesised that this inhibition may render parasites hyper-susceptible to anthelmintic drugs. Migration inhibition assays with A. suum larvae demonstrated that the potency of levamisole (LEV) and ivermectin (IVM) were significantly increased in the presence of PAC purified from pine bark (4.6-fold and 3.2-fold reduction in IC50 value for LEV and IVM, respectively). Synergy analysis revealed that the relationship between PAC and LEV appeared to be synergistic in nature, suggesting a specific enhancement of LEV activity, whilst the relationship between PAC and IVM was additive rather than synergistic, suggesting independent actions. Our results demonstrate that these common dietary compounds may increase the efficacy of synthetic anthelmintic drugs in vitro, and also suggest one possible mechanism for their well-known anti-parasitic activity.
Resumo:
Meloidogyne enterolobii Yang & Eisenback (Sin.: M. mayaguensis Rammah & Hirschmann), poliphagous plant parasitic nematode, has been reported causing hard damage in several plant species in Brazil. This communication represents the first occurrence of this nematode in the municipality of Uberlandia, Minas Gerais State, Brazil.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho foi avaliar os efeitos de diferentes sistemas de pastejo, com ovinos e bovinos, sobre a quantidade de larvas no estágio L3 de nematódeos de ruminantes. O delineamento experimental foi inteiramente ao acaso, em arranjo fatorial com quatro sistemas de pastejo e quatro períodos de rotação de pastagem. A duração do experimento foi de 91 dias, com sistema rotacionado (7 dias de ocupação e 21 de descanso), em 8 ha de Panicum maximum cv. Tanzânia. Foram avaliados os sistemas de pastejo: alternado, simultâneo e isolado, com ovinos e com bovinos. Foram utilizados 20 bovinos (mestiços), 30 cordeiros e 15 ovelhas adultas (raça Santa Inês). As amostras do capim, para recuperação e identificação dos nematódeos, foram realizadas semanalmente no pré e pós-pastejo dos piquetes. Na média geral de todos os manejos, a ordem decrescente de número de larvas foi: Haemonchus spp., Trichostrongylus spp., Oesophagostomum spp., Strongyloides spp. e Cooperia spp. Correlações médias foram encontradas entre as quantidades de larvas L3 no pré e pós-pastejo. Com o aumento do número de rotações, houve aumento no grau de contaminação da pastagem pelas larvas, independentemente do sistema adotado. O sistema de pastejo simultâneo foi o que apresentou maior controle da carga parasitária de Haemonchus spp. na pastagem de capim-tanzânia.