958 resultados para pancreas tumor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Efforts to identify novel therapeutic options for human pancreatic ductal adenocarcinoma (PDAC) have failed to result in a clear improvement in patient survival to date. Pancreatic cancer requires efficient therapies that must be designed and assayed in preclinical models with improved predictor ability. Among the available preclinical models, the orthotopic approach fits with this expectation, but its use is still occasional. Methods An in vivo platform of 11 orthotopic tumor xenografts has been generated by direct implantation of fresh surgical material. In addition, a frozen tumorgraft bank has been created, ensuring future model recovery and tumor tissue availability. Results Tissue microarray studies allow showing a high degree of original histology preservation and maintenance of protein expression patterns through passages. The models display stable growth kinetics and characteristic metastatic behavior. Moreover, the molecular diversity may facilitate the identification of tumor subtypes and comparison of drug responses that complement or confirm information obtained with other preclinical models. Conclusions This panel represents a useful preclinical tool for testing new agents and treatment protocols and for further exploration of the biological basis of drug responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Efforts to identify novel therapeutic options for human pancreatic ductal adenocarcinoma (PDAC) have failed to result in a clear improvement in patient survival to date. Pancreatic cancer requires efficient therapies that must be designed and assayed in preclinical models with improved predictor ability. Among the available preclinical models, the orthotopic approach fits with this expectation, but its use is still occasional. Methods An in vivo platform of 11 orthotopic tumor xenografts has been generated by direct implantation of fresh surgical material. In addition, a frozen tumorgraft bank has been created, ensuring future model recovery and tumor tissue availability. Results Tissue microarray studies allow showing a high degree of original histology preservation and maintenance of protein expression patterns through passages. The models display stable growth kinetics and characteristic metastatic behavior. Moreover, the molecular diversity may facilitate the identification of tumor subtypes and comparison of drug responses that complement or confirm information obtained with other preclinical models. Conclusions This panel represents a useful preclinical tool for testing new agents and treatment protocols and for further exploration of the biological basis of drug responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Efforts to identify novel therapeutic options for human pancreatic ductal adenocarcinoma (PDAC) have failed to result in a clear improvement in patient survival to date. Pancreatic cancer requires efficient therapies that must be designed and assayed in preclinical models with improved predictor ability. Among the available preclinical models, the orthotopic approach fits with this expectation, but its use is still occasional. Methods An in vivo platform of 11 orthotopic tumor xenografts has been generated by direct implantation of fresh surgical material. In addition, a frozen tumorgraft bank has been created, ensuring future model recovery and tumor tissue availability. Results Tissue microarray studies allow showing a high degree of original histology preservation and maintenance of protein expression patterns through passages. The models display stable growth kinetics and characteristic metastatic behavior. Moreover, the molecular diversity may facilitate the identification of tumor subtypes and comparison of drug responses that complement or confirm information obtained with other preclinical models. Conclusions This panel represents a useful preclinical tool for testing new agents and treatment protocols and for further exploration of the biological basis of drug responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Efforts to identify novel therapeutic options for human pancreatic ductal adenocarcinoma (PDAC) have failed to result in a clear improvement in patient survival to date. Pancreatic cancer requires efficient therapies that must be designed and assayed in preclinical models with improved predictor ability. Among the available preclinical models, the orthotopic approach fits with this expectation, but its use is still occasional. Methods An in vivo platform of 11 orthotopic tumor xenografts has been generated by direct implantation of fresh surgical material. In addition, a frozen tumorgraft bank has been created, ensuring future model recovery and tumor tissue availability. Results Tissue microarray studies allow showing a high degree of original histology preservation and maintenance of protein expression patterns through passages. The models display stable growth kinetics and characteristic metastatic behavior. Moreover, the molecular diversity may facilitate the identification of tumor subtypes and comparison of drug responses that complement or confirm information obtained with other preclinical models. Conclusions This panel represents a useful preclinical tool for testing new agents and treatment protocols and for further exploration of the biological basis of drug responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ectopic ACTH Cushing's syndrome (EAS) is often caused by neuroendocrine tumors (NETs) of lungs, pancreas, thymus, and other less frequent locations. Localizing the source of ACTH can be challenging. A 64-year-old man presented with rapidly progressing fatigue, muscular weakness, and dyspnea. He was in poor condition and showed facial redness, proximal amyotrophy, and bruises. Laboratory disclosed hypokalemia, metabolic alkalosis, and markedly elevated ACTH and cortisol levels. Pituitary was normal on magnetic resonance imaging (MRI), and bilateral inferior petrosal sinus blood sampling with corticotropin-releasing hormone stimulation showed no significant central-to-periphery gradient of ACTH. Head and neck, thoracic and abdominal computerized tomography (CT), MRI, somatostatin receptor scintigraphy (SSRS), and (18)F-deoxyglucose-positron emission tomography (FDG-PET) failed to identify the primary tumor. (18)F-dihydroxyphenylalanine (F-DOPA)-PET/CT unveiled a 20-mm nodule in the jejunum and a metastatic lymph node. Segmental jejunum resection showed two adjacent NETs, measuring 2.0 and 0.5 cm with a peritoneal metastasis. The largest tumor expressed ACTH in 30% of cells. Following surgery, after a transient adrenal insufficiency, ACTH and cortisol levels returned to normal values and remain normal over a follow-up of 26 months. Small mid-gut NETs are difficult to localize on CT or MRI, and require metabolic imaging. Owing to low mitotic activity, NETs are generally poor candidates for FDG-PET, whereas SSRS shows poor sensitivity in EAS due to intrinsically low tumor concentration of type-2 somatostatin receptors (SST2) or to receptor down regulation by excess cortisol. However, F-DOPA-PET, which is related to amine precursor uptake by NETs, has been reported to have high positive predictive value for occult EAS despite low sensitivity, and constitutes a useful alternative to more conventional methods of tumor localization. LEARNING POINTS: Uncontrolled high cortisol levels in EAS can be lethal if untreated.Surgical excision is the keystone of NETs treatment, thus tumor localization is crucial.Most cases of EAS are caused by NETs, which are located mainly in the lungs. However, small gut NETs are elusive to conventional imaging and require metabolic imaging for detection.FDG-PET, based on tumor high metabolic rate, may not detect NETs that have low mitotic activity. SSRS may also fail, due to absent or low concentration of SST2, which may be down regulated by excess cortisol.F-DOPA-PET, based on amine-precursor uptake, can be a useful method to localize the occult source of ACTH in EAS when other methods have failed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes mellitus represents a serious public health problem owing to its global prevalence in the last decade. The causes of this metabolic disease include dysfunction and/or insufficient number of β cells. Existing diabetes mellitus treatments do not reverse or control the disease. Therefore, β-cell mass restoration might be a promising treatment. Several restoration approaches have been developed: inducing the proliferation of remaining insulin-producing cells, de novo islet formation from pancreatic progenitor cells (neogenesis), and converting non-β cells within the pancreas to β cells (transdifferentiation) are the most direct, simple, and least invasive ways to increase β-cell mass. However, their clinical significance is yet to be determined. Hypothetically, β cells or islet transplantation methods might be curative strategies for diabetes mellitus; however, the scarcity of donors limits the clinical application of these approaches. Thus, alternative cell sources for β-cell replacement could include embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells. However, most differentiated cells obtained using these techniques are functionally immature and show poor glucose-stimulated insulin secretion compared with native β cells. Currently, their clinical use is still hampered by ethical issues and the risk of tumor development post transplantation. In this review, we briefly summarize the current knowledge of mouse pancreas organogenesis, morphogenesis, and maturation, including the molecular mechanisms involved. We then discuss two possible approaches of β-cell mass restoration for diabetes mellitus therapy: β-cell regeneration and β-cell replacement. We critically analyze each strategy with respect to the accessibility of the cells, potential risk to patients, and possible clinical outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several pancreatic diseases may require surgical treatment, with most of these procedures classified as resection or drainage. Resection procedures, which are usually performed to remove pancreatic tumors, include pancreatoduodenectomy, central pancreatectomy, distal pancreatectomy, and total pancreatectomy. Drainage procedures are usually performed to treat chronic pancreatitis after the failure of medical therapy and include the Puestow and Frey procedures. The type of surgery depends not only on the patient's symptoms and the location of the disease, but also on the expertise of the surgeon. Radiologists should become familiar with these surgical procedures to better understand postoperative changes in anatomic findings. Multidetector computed tomography is the modality of choice for identifying normal findings after surgery, postoperative complications, and tumor recurrence in patients who have undergone pancreatic surgery. (C)RSNA, 2012 . radiographics.rsna.org

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among clinically relevant somatostatin functions, agonist-induced somatostatin receptor subtype 2 (sst(2)) internalization is a potent mechanism for tumor targeting with sst(2) affine radioligands such as octreotide. Since, as opposed to octreotide, the second generation multi-somatostatin analog SOM230 (pasireotide) exhibits strong functional selectivity, it appeared of interest to evaluate its ability to affect sst(2) internalization in vivo. Rats bearing AR42J tumors endogenously expressing somatostatin sst(2) receptors were injected intravenously with SOM230 or with the [Tyr(3), Thr(8)]-octreotide (TATE) analog; they were euthanized at various time points; tumors and pancreas were analyzed by immunohistochemistry for the cellular localization of somatostatin sst(2) receptors. SOM230-induced sst(2) internalization was also evaluated in vitro by immunofluorescence microscopy in AR42J cells. At difference to the efficient in vivo sst(2) internalization triggered by intravenous [Tyr(3), Thr(8)]-octreotide, intravenous SOM230 did not elicit sst(2) internalization: immunohistochemically stained sst(2) in AR42J tumor cells and pancreatic cells were detectable at the cell surface at 2.5min, 10min, 1h, 6h, or 24h after SOM230 injection while sst(2) were found intracellularly after [Tyr(3), Thr(8)]-octreotide injection. The inability of stimulating sst(2) internalization by SOM230 was confirmed in vitro in AR42J cells by immunofluorescence microscopy. Furthermore, SOM230 was unable to antagonize agonist-induced sst(2) internalization, neither in vivo, nor in vitro. Therefore, SOM230 does not induce sst(2) internalization in vivo or in vitro in AR42J cells and pancreas, at difference to octreotide derivatives with comparable sst(2) binding affinities. These characteristics may point towards different tumor targeting but also to different desensitization properties of clinically applied SOM230.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incidence and prevalence of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) have increased in the past 20 years. GEP-NETs are heterogeneous tumors, in terms of clinical and biological features, that originate from the pancreas or the intestinal tract. Some GEP-NETs grow very slowly, some grow rapidly and do not cause symptoms, and others cause hormone hypersecretion and associated symptoms. Most GEP-NETs overexpress receptors for somatostatins. Somatostatins inhibit the release of many hormones and other secretory proteins; their effects are mediated by G protein-coupled receptors that are expressed in a tissue-specific manner. Most GEP-NETs overexpress the somatostatin receptor SSTR2; somatostatin analogues are the best therapeutic option for functional neuroendocrine tumors because they reduce hormone-related symptoms and also have antitumor effects. Long-acting formulations of somatostatin analogues stabilize tumor growth over long periods. The development of radioactive analogues for imaging and peptide receptor radiotherapy has improved the management of GEP-NETs. Peptide receptor radiotherapy has significant antitumor effects, increasing overall survival times of patients with tumors that express a high density of SSTRs, particularly SSTR2 and SSTR5. The multi-receptor somatostatin analogue SOM230 (pasireotide) and chimeric molecules that bind SSTR2 and the dopamine receptor D2 are also being developed to treat patients with GEP-NETs. Combinations of radioactive labeled and unlabeled somatostatin analogues and therapeutics that inhibit other signaling pathways, such as mammalian target of rapamycin (mTOR) and vascular endothelial growth factor, might be the most effective therapeutics for GEP-NETs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a large series of nonselected autopsy investigations an accessory spleen was found in 10-30%. The second most common site is the pancreatic tail (17%). We report a case of intrapancreatic accessory spleen misdiagnosed as a nonsecreting neuroendocrine tumor of the pancreas. Nuclear scintigraphy may provide the definitive diagnosis of an intrapancreatic spleen and therefore prevent patients from unnecessary major surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both the European Neuroendocrine Tumor Society (ENETS) and the International Union for Cancer Control/American Joint Cancer Committee/World Health Organization (UICC/AJCC/WHO) have proposed TNM staging systems for pancreatic neuroendocrine neoplasms. This study aims to identify the most accurate and useful TNM system for pancreatic neuroendocrine neoplasms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microcystic adenoma or serous cystadenoma is an uncommon tumor and accounts for 1-2% of the exocrine neoplasms of the pancreas. Usually unifocal, they present as single, large, well-demarcated multiloculated cystic tumors, ranging in size from 1 to 25 cm. Multifocal variants or diffuse serous cystadenomas are extremely rare. We present 2 cases of which 1 is a diffuse variant affecting the body, tail and part of the neck of the pancreas. In both the patients the tumors were detected incidentally. We highlight on the diffuse variant in view of its rarity and present a review of literature. In this case the entire body and tail of the pancreas was spongy replaced by multicystic lobules and hyalinized fibrocollagenous stroma. The cysts were lined by low cuboidal glycogen containing bland cells. Such a unique presentation wherein the entire body and tail of the pancreas is replaced with multiple cysts is a diffuse presentation of microcystic adenoma and a search through literature revealed only 7 such cases among the 15 cases with multifocal presentation reported.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Raf-1 kinase inhibitor protein (RKIP) has emerged as a significant metastatic suppressor in a variety of human cancers and is known to inhibit Ras/Raf/MEK/ERK signaling. By suppressing the activation of the NFkB/SNAIL circuit, RKIP can regulate the induction of epithelial-mesenchymal transition (EMT). The aim of this study was to evaluate RKIP expression and to determine its association with clinicopathological features, including EMT in form of tumor budding in pancreatic ductal adenocarcinoma (PDAC). METHODS Staining for RKIP was performed on a multipunch Tissue Microarray (TMA) of 114 well-characterized PDACs with clinico-pathological, follow-up and adjuvant therapy information. RKIP-expression was assessed separately in the main tumor body and in the tumor buds. Another 3 TMAs containing normal pancreatic tissue, precursor lesions (Pancreatic Intraepithelial Neoplasia, PanINs) and matched lymph node metastases were stained in parallel. Cut-off values were calculated by receiver operating characteristic (ROC) curve analysis. RESULTS We found a significant progressive loss of RKIP expression between normal pancreatic ductal epithelia (average: 74%), precursor lesions (PanINs; average: 37%), PDAC (average 20%) and lymph node metastases (average 8%, p<0.0001). RKIP expression was significantly lower in tumor buds (average: 6%) compared to the main tumor body (average 20%; p<0.005). RKIP loss in the tumor body was marginally associated with advanced T-stage (p=0.0599) as well as high-grade peritumoral (p=0.0048) and intratumoral budding (p=0.0373). RKIP loss in the buds showed a clear association with advanced T stage (p=0.0089). CONCLUSIONS The progressive loss of RKIP seems to play a major role in the neoplastic transformation of pancreas, correlates with aggressive features in PDAC and is associated with the presence of EMT in form of tumor budding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperplastic changes of the neuroendocrine cell system may have the potential to evolve into neoplastic diseases. This is particularly the case in the setting of genetically determined and hereditary neuroendocrine tumor syndromes such as MEN1. The review discusses the MEN1-associated hyperplasia-neoplasia sequence in the development of gastrinomas in the duodenum and glucagon-producing tumors in the pancreas. It also presents other newly described diseases (e.g., glucagon cell adenomatosis and insulinomatosis) in which the tumors are (or most likely) also preceded by islet cell hyperplasia. Finally, the pseudohyperplasia of PP-rich islets in the pancreatic head is defined as a physiologic condition clearly differing from other hyperplastic-neoplastic neuroendocrine diseases.