982 resultados para pancreas insufficiency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 1 diabetes is a disease where the insulin-producing beta cells of the pancreas are destroyed by an autoimmune mechanism. The incidence of type 1 diabetes, as well as the incidence of the diabetic kidney complication, diabetic nephropathy, are increasing worldwide. Nephrin is a crucial molecule for the filtration function of the kidney. It localises in the podocyte foot processes partially forming the interpodocyte final sieve of the filtration barrier, the slit diaphragm. The expression of nephrin is altered in diabetic nephropathy. Recently, nephrin was found from the beta cells of the pancreas as well, which makes this molecule interesting in the context of type 1 diabetes and especially in diabetic nephropathy. In this thesis work, the expression of other podocyte molecules in the beta cells of the pancreas, in addition to nephrin, were deciphered. It was also hypothesised that patients with type 1 diabetes may develop autoantibodies against novel beta cell molecules comparably to the formation of autoantibodies to GAD, IA-2 and insulin. The possible association of such novel autoantibodies with the pathogenesis of diabetic nephropathy was also assessed. Furthermore, expression of nephrin in lymphoid tissues has been suggested, and this issue was more thoroughly deciphered here. The expression of nephrin in the human lymphoid tissues, and a set of podocyte molecules in the human, mouse and rat pancreas at the gene and protein level were studied by polymerase chain reaction (PCR) -based methods and immunochemical methods. To detect autoantibodies to novel beta cell molecules, specific radioimmunoprecipitation assays were developed. These assays were used to screen a follow-up material of 66 patients with type 1 diabetes and a patient material of 150 diabetic patients with signs of diabetic nephropathy. Nephrin expression was detected in the lymphoid follicle germinal centres, specifically in the follicular dendritic cells. In addition to the previously reported expression of nephrin in the pancreas, expression of the podocyte molecules, densin, filtrin, FAT and alpha-actinin-4 were detected in the beta cells. Circulating antibodies to nephrin, densin and filtrin were discovered in a subset of patients with type 1 diabetes. However, no association of these autoantibodies with the pathogenesis of diabetic nephropathy was detected. In conclusion, the expression of five podocyte molecules in the beta cells of the pancreas suggests some molecular similarities between the two cell types. The novel autoantibodies against shared molecules of the kidney podocytes and the pancreatic beta cells appear to be part of the common autoimmune mechanism in patients with type 1 diabetes. No data suggested that the autoantibodies would be active participants of the kidney injury detected in diabetic nephropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human pancreatic juice contains two major trypsinogen isoenzymes called trypsinogen-1 and -2, or cationic and anionic trypsinogen, respectively. Trypsinogen isoenzymes are also expressed in various normal and malignant tissues. We aimed at developing monoclonal antibodies (MAbs) and time-resolved immunofluorometric methods recognizing human trypsinogen-1 and -2, respectively. Using these MAbs and methods we purified, characterized and quantitated trypsinogen isoenzymes in serum samples, ovarian cyst fluids and conditioned cell culture media. In sera from healthy subjects and patients with extrapancreatic disease the concentration of trypsinogen-1 is higher than that of trypsinogen-2. However, in acute pancreatitis we found that the concentration of serum trypsinogen-2 is 50-fold higher than in controls, whereas the difference in trypsinogen-1 concentration is only 15-fold. This suggested that trypsinogen-2 could be used as a diagnostic marker for acute pancreatitis. In human ovarian cyst fluids tumor-associated trypsinogen-2 (TAT-2) is the predominant isoenzyme. Most notably, in mucinous cyst fluids the levels of TAT-2 were higher in borderline and malignant than in benign cases. The increased levels in association with malignancy suggested that TAT could be involved in ovarian tumor dissemination and breakage of tissue barriers. Serum samples from patients who had undergone pancreatoduodenectomy contained trypsinogen-2. Trypsinogen-1 was detected in only one of nine samples. These results suggested that the expression of trypsinogen is not restricted to the pancreas. Determination of the isoenzyme pattern by ion exchange chromatography revealed isoelectric variants of trypsinogen isoenzymes in serum samples. Intact trypsinogen isoenzymes and tryptic and chymotryptic trypsinogen peptides were purified and characterized by mass spectrometry, Western blot analysis and N-terminal sequencing. The results showed that pancreatic trypsinogen-1 and -2 are sulfated at tyrosine 154 (Tyr154), whereas TAT-2 from a colon carcinoma cell line is not. Tyr154 is located within the primary substrate binding pocket of trypsin, thus Tyr154 sulfation is likely to influence substrate binding. The previously known differences in charge, substrate specificity and inhibitor binding between pancreatic and tumor-associated trypsinogens are suggested to be caused by sulfation of Tyr154 in pancreatic trypsinogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder in which the cardinal symptoms arise from exocrine pancreatic insufficiency and bone marrow dysfunction. Previous studies have suggested increased risk of fatal complications among Finnish SDS infants. The genetic defect responsible for the disease was recently identified; the SBDS gene is located at chromosome 7q11 and encodes a protein that is involved in ribosome biosynthesis. The discovery of the SBDS gene has opened new insights into the pathogenesis of this multi-organ disease. This study aimed to assess phenotypic and genotypic features of Finnish patients with SDS. Seventeen Finnish patients with a clinical diagnosis of SDS were included in the study cohort. Extensive clinical, biochemical and imaging assessments were performed to elucidate the phenotypic features, and the findings were correlated with the SBDS genotype. Imaging studies included abdominal magnetic reso-nance imaging (MRI), brain MRI, cardiac echocardiography including tissue Doppler examination, and cardiac MRI. The skeletal phenotype was assessed by dual-energy X-ray absorptiometry and bone histomorphometry. Twelve patients had mutations in the SBDS gene. In MRI, a characteristic pattern of fat-replaced pancreas with occasional enhancement of scattered parenchymal foci and of pancreatic duct was noted in the SBDS mutation-positive patients while the mutation-negative patients did not have pancreatic fat accumulation. The patients with SBDS mutations had significantly reduced bone mineral density associated with low-energy peripheral fractures and vertebral compression fractures. Bone histomorphometry confirmed low-turnover osteoporosis. The patients with SBDS mutations had learning difficulties and smaller head size and brain volume than control subjects. Corpus callosum, cerebellar vermis, and pos-terior fossa structures were significantly smaller in SDS patients than in controls. Patients with SDS did not have evidence of clinical heart disease or myocardial fibrosis. However, subtle diastolic changes in the right ventricle and exercise-induced changes in the left ventricle contractile reserve were observed. This study expanded the phenotypic features of SDS to include primary low-turnover osteoporosis and structural alterations in the brain. Pancreatic MRI showed characteristic changes in the SBDS mutation-positive patients while these were absent in the mutation-negative patients, suggesting that MRI can be used to differentiate patients harbouring SBDS mutations from those without mutations. No evidence for clinical cardiac manifestations was found, but imaging studies revealed slightly altered myocardial function that may have clinical implications. These findings confirm the pleiotropic nature of SDS and underscore the importance of careful multidisciplinary follow-up of the affected individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As representatives of the most primitive of recent vertebrate groups, lampreys show fundamental differences in different features of organisation to the species of the remaining classes of vertebrates. The topical distinction between exocrine and endocrine pancreas is also considered among the morphological peculiarities of Petromyzontida. This study aims to contribute to a further explanation of this phenomenon. 50 brook lampreys were histologically examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution pattern of exocrine pancreas in Labeo rohita besides its general location along the course of intestinal mesentery was studied. It is evenly distributed within the liver around portal vessels and also within the spleen near a blood vessel. On ultrastructure, two cell types of different degrees of staining intensities containing abundant rough endoplasmic reticulum, mitochondria, pre-zymogen and zymogen granules were marked. During aflatoxicosis, the mesenteric pancreas and hepatic pancreas were mostly affected revealing necrotic changes to acini. The zymogen granular activities were markedly reduced. Ultra structurally, the rough endoplasmic reticulum was fully dilated and formed whorled pattern. The damage to the exocrine pancreas might be affecting digestive enzymes' secretion which may be one of the causes of aflatoxin-induced anorexia in fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress is a deleterious stressor associated with a plethora of disease and aging manifestations, including neurodegenerative disorders, yet very few factors and mechanisms promoting the neuroprotection of photoreceptor and other neurons against oxidative stress are known. Insufficiency of RAN-binding protein-2 (RANBP2), a large, mosaic protein with pleiotropic functions, suppresses apoptosis of photoreceptor neurons upon aging and light-elicited oxidative stress, and promotes age-dependent tumorigenesis by mechanisms that are not well understood. Here we show that, by downregulating selective partners of RANBP2, such as RAN GTPase, UBC9 and ErbB-2 (HER2; Neu), and blunting the upregulation of a set of orphan nuclear receptors and the light-dependent accumulation of ubiquitylated substrates, light-elicited oxidative stress and Ranbp2 haploinsufficiency have a selective effect on protein homeostasis in the retina. Among the nuclear orphan receptors affected by insufficiency of RANBP2, we identified an isoform of COUP-TFI (Nr2f1) as the only receptor stably co-associating in vivo with RANBP2 and distinct isoforms of UBC9. Strikingly, most changes in proteostasis caused by insufficiency of RANBP2 in the retina are not observed in the supporting tissue, the retinal pigment epithelium (RPE). Instead, insufficiency of RANBP2 in the RPE prominently suppresses the light-dependent accumulation of lipophilic deposits, and it has divergent effects on the accumulation of free cholesterol and free fatty acids despite the genotype-independent increase of light-elicited oxidative stress in this tissue. Thus, the data indicate that insufficiency of RANBP2 results in the cell-type-dependent downregulation of protein and lipid homeostasis, acting on functionally interconnected pathways in response to oxidative stress. These results provide a rationale for the neuroprotection from light damage of photosensory neurons by RANBP2 insufficiency and for the identification of novel therapeutic targets and approaches promoting neuroprotection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maternal vitamin D insufficiency is associated with childhood rickets and longer-term problems including schizophrenia and type 1 diabetes. Whilst maternal vitamin D insufficiency is common in mothers with highly pigmented skin, little is known about vitamin D status of Caucasian pregnant women. The aim was to investigate vitamin D status in healthy Caucasian pregnant women and a group of age-matched non-pregnant controls living at 54–55°N. In a longitudinal study, plasma 25-hydroxyvitamin D (25(OH)D) was assessed in ninety-nine pregnant women at 12, 20 and 35 weeks of gestation, and in thirty-eight non-pregnant women sampled concurrently. Plasma 25(OH)D concentrations were lower in pregnant women compared to non-pregnant women (P < 0·0001). Of the pregnant women, 35, 44 and 16 % were classified as vitamin D deficient (25(OH)D < 25 nmol/l), and 96, 96 and 75 % were classified as vitamin D insufficient (25(OH)D < 50 nmol/l) at 12, 20 and 35 weeks gestation, respectively. Vitamin D status was higher in pregnant women who reported taking multivitamin supplements at 12 (P < 0·0001), 20 (P = 0·001) and 35 (P = 0·001) weeks gestation than in non-supplement users. Vitamin D insufficiency is evident in pregnant women living at 54–55°N. Women reporting use of vitamin D-containing supplements had higher vitamin D status, however, vitamin D insufficiency was still evident even in the face of supplement use. Given the potential consequences of hypovitaminosis D on health outcomes, vitamin D supplementation, perhaps at higher doses than currently available, is needed to improve maternal vitamin D nutriture.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transplantation of insulin secreting cells is regarded as a possible treatment for type 1 diabetes. One major difficulty in this approach is, however, that the transplanted cells are exposed to the patient's inflammatory and autoimmune environment, which originally destroyed their own beta-cells. Therefore, even if a good source of insulin-secreting cells can be identified for transplantation therapy, these cells need to be protected against these destructive influences. The aim of this project was to evaluate, using a clonal mouse beta-cell line, whether genetic engineering of protective genes could be a viable option to allow these cells to survive when transplanted into autoimmune diabetic mice. We demonstrated that transfer of the Bcl-2 anti-apoptotic gene and of several genes specifically interfering with cytokines intracellular signalling pathways, greatly improved resistance of the cells to inflammatory stresses in vitro. We further showed that these modifications did not interfere with the capacity of these cells to correct hyperglycaemia for several months in syngeneic or allogeneic streptozocin-diabetic mice. However, these cells were not protected against autoimmune destruction when transplanted into type 1 diabetic NOD mice. This suggests that in addition to inflammatory attacks by cytokines, autoimmunity very efficiently kills the transplanted cells, indicating that multiple protective mechanisms are required for efficient transplantation of insulin-secreting cells to treat type 1 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The biologic attributes of the endocrine pancreas and the comparative endocrinology of islet amyloid polypeptide (IAPP) of fish are not well described in the literature. This study describes the endocrine pancreas of one teleostean fish. Ten captive Atlantic wolffish (Anarhichas lupus) from the Montreal Biodome were submitted for necropsy and their pancreata were collected. Results: Grossly, all the fish pancreata examined contained 1-3 nodules of variable diameter (1-8 mm). Microscopically, the nodules were uniform, highly cellular, and composed of polygonal to elongated cells. Immunofluorescence for pancreatic hormones was performed. The nodules were immunoreactive for insulin most prominent centrally, but with IAPP and glucagon only in the periphery of the nodules. Exocrine pancreas was positive for chromogranin A. Not previously recognized in fish, IAPP immunoreactivity occurred in α, glucagon-containing, cells and did not co-localize with insulin in β cells. The islet tissues were devoid of amyloid deposits. IAPP DNA sequencing was performed to compare the sequence among teleost fish and the potency to form amyloid fibrils. In silico analysis of the amino acid sequences 19-34 revealed that it was not amyloidogenic. Conclusions: Amyloidosis of pancreatic islets would not be expected as a spontaneous disease in the Atlantic wolffish. Our study underlines that this teleost fish is a potential candidate for pancreatic xenograft research.