1000 resultados para p-mixing
Resumo:
LHC has found hints for a Higgs particle of 125 GeV. We investigate the possibility that such a particle is a mixture of scalar and pseudoscalar states. For definiteness, we concentrate on a two-Higgs doublet model with explicit CP violation and soft Z(2) violation. Including all Higgs production mechanisms, we determine the current constraints obtained by comparing h -> yy with h -> VV*, and comment on the information which can be gained by measurements of h -> b (b) over bar. We find bounds vertical bar s(2)vertical bar less than or similar to 0.83 at one sigma, where vertical bar s(2)vertical bar = 0 (vertical bar s(2)vertical bar = 1) corresponds to a pure scalar (pure pseudoscalar) state.
Resumo:
Optical fiber microwires (OFMs) are nonlinear optical waveguides that support several spatial modes. The multimodal generalized nonlinear Schrodinger equation (MM-GNLSE) is deduced taking into account the linear and nonlinear modal coupling. A detailed theoretical description of four-wave mixing (FWM) considering the modal coupling is developed. Both, the intramode and the intermode phase-matching conditions is calculated for an optical microwire in a strong guiding regime. Finally, the FWM dynamics is studied and the amplitude evolution of the pump beams, the signal and the idler are analyzed.
Resumo:
We produce five flavour models for the lepton sector. All five models fit perfectly well - at the 1 sigma level - the existing data on the neutrino mass-squared differences and on the lepton mixing angles. The models are based on the type I seesaw mechanism, on a Z(2) symmetry for each lepton flavour, and either on a (spontaneously broken) symmetry under the interchange of two lepton flavours or on a (spontaneously broken) CP symmetry incorporating that interchange - or on both symmetries simultaneously. Each model makes definite predictions both for the scale of the neutrino masses and for the phase delta in lepton mixing; the fifth model also predicts a correlation between the lepton mixing angles theta(12) and theta(23).
Resumo:
We study neutrino masses and mixing in the context of flavor models with A(4) symmetry, three scalar doublets in the triplet representation, and three lepton families. We show that there is no representation assignment that yields a dimension-5 mass operator consistent with experiment. We then consider a type-I seesaw with three heavy right-handed neutrinos, explaining in detail why it fails, and allowing us to show that agreement with the present neutrino oscillation data can be recovered with the inclusion of dimension-3 heavy neutrino mass terms that break softly the A(4) symmetry.
Resumo:
We present a new model of the lepton sector that uses a family symmetry A(4) to make predictions for lepton mixing which are invariant under any permutation of the three flavours. We show that those predictions broadly agree with the experimental data, leading to a largish sin(2)theta(12) greater than or similar to 0.34, to vertical bar cos delta vertical bar greater than or similar to 0.7, and to vertical bar 0.5 - sin(2)theta(23)vertical bar greater than or similar to 0.08; cos delta and 0.5 - sin(2)theta(23) are predicted to have identical signs. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Fluid mixing in mechanically agitated tanks is one of the major unit operations in many industries. Bubbly flows have been of interest among researchers in physics, medicine, chemistry and technology over the centuries. The aim of this thesis is to use advanced numerical methods for simulating microbubble in an aerated mixing tank. Main components of the mixing tank are a cylindrical vessel, a rotating Rushton turbine and the air nozzle. The objective of Computational Fluid Dynamics (CFD) is to predict fluid flow, heat transfer, mass transfer and chemical reactions. The CFD simulations of a turbulent bubbly flow are carried out in a cylindrical mixing tank using large eddy simulation (LES) and volume of fluid (VOF) method. The Rushton turbine induced flow is modeled by using a sliding mesh method. Numerical results are used to describe the bubbly flows in highly complex liquid flow. Some of the experimental works related to turbulent bubbly flow in a mixing tank are briefly reported. Numerical simulations are needed to complete and interpret the results of the experimental work. Information given by numerical simulations has a major role in designing and scaling-up mixing tanks. The results of this work have been reported in the following scientific articles: ·Honkanen M., Koohestany A., Hatunen T., Saarenrinne P., Zamankhan P., Large eddy simulations and PIV experiments of a two-phase air-water mixer, in Proceedings of ASME Fluids Engineering Summer Conference (2005). ·Honkanen M., Koohestany A., Hatunen T., Saarenrinne P., Zamankhan P., Dynamical States of Bubbling in an Aerated Stirring Tank, submitted to J. Computational Physics.
Resumo:
Despite increasing interest in long-distance migration, the wintering areas, migration corridors, and population mix in winter quarters of most pelagic marine predators are unknown. Here, we present the first study tracking migration movements of shearwaters through the non-breeding period. We used geolocators (global location sensing [GLS] units based on ambient light levels) to track 22 Cory's shearwaters (Calonectris diomedea) breeding in three different areas. Most birds wintered in one or more of three relatively small areas, all clearly associated with major coastal upwelling systems of the tropical and south Atlantic. Trans-equatorial movements were dominated by prevailing trade winds and westerlies, while calm, oligotrophic areas were avoided. Breeding populations clearly differed in their preference amongst the three major wintering areas, but showed substantial mixing. This illustrates the exceptional value of GLS, not only for determining and describing the influence of oceanographic features on migration patterns, but also for assessing population mix in winter quarters. This knowledge is essential to understanding the impacts of population-level threats, such as longlining, offshore windfarms, and oil spills on multiple breeding sites, and will be critical in devising conservation policies that guarantee the sustainable exploitation of the oceans.
Resumo:
Intercellular communication may be regulated by the differential expression of subunit gap junction proteins (connexins) which form channels with differing gating and permeability properties. Endothelial cells express three different connexins (connexin37, connexin40, and connexin43) in vivo. To study the differential regulation of expression and synthesis of connexin37 and connexin43, we used cultured bovine aortic endothelial cells which contain these two connexins in vitro. RNA blots demonstrated discordant expression of these two connexins during growth to confluency. RNA blots and immunoblots showed that levels of these connexins were modulated by treatment of cultures with transforming growth factor-ß1. To examine the potential ability of these connexins to form heteromeric channels (containing different connexins within the same hemi-channel), we stably transfected connexin43-containing normal rat kidney (NRK) cells with connexin37 or connexin40. In the transfected cells, both connexin proteins were abundantly produced and localized in identical distributions as detected by immunofluorescence. Double whole-cell patch-clamp studies showed that co-expressing cells exhibited unitary channel conductances and gating characteristics that could not be explained by hemi-channels formed of either connexin alone. These observations suggest that these connexins can readily mix with connexin43 to form heteromeric channels and that the intercellular communication between cells is determined not only by the properties of individual connexins, but also by the interactions of those connexins to form heteromeric channels with novel properties. Furthermore, modulation of levels of the co-expressed connexins during cell proliferation or by cytokines may alter the relative abundance of different heteromeric combinations.
Resumo:
International School of Photonics, Cochin University of Science & Technology
Resumo:
Here we report measurements of third-order susceptibility χ(3), figure of merit F defined as χ(3)/α (where α is the absorption coefficient) and second hyperpolarizability 〈γ〉 of some metal substituted phthalocyanines and a naphthalocyanine in solutions of dimethyl formamide using degenerate four wave mixing at 532 nm under nanosecond excitation. It was found that among samples investigated, bis-naphthalocyanine possessed the highest value of 〈γ〉 followed by the bis-phthalocyanine. This observation is explained on the basis that bis-naphthalocyanine followed by bis-phthalocyanine has higher degree of π electron conjugation.
Resumo:
Third order nonlinear susceptibility χ(3) and second hyperpolarizability (γ) of a bis-naphthalocyanine viz. europium naphthalocyanines, Eu(Nc)2, were measured in dimethyl formamide solution using degenerate four wave mixing at 532 nm under nanosecond pulse excitation. Effective nonlinear absorption coefficient, βeff and imaginary part of nonlinear susceptibility, Im(χ(3)) were obtained using open aperture /Z-scan technique at the same wavelength. Optical limiting property of the sample was also investigated. The role of excited state absorption in deciding the nonlinear properties of this material is discussed.
Resumo:
In this paper, the available potential energy (APE) framework of Winters et al. (J. Fluid Mech., vol. 289, 1995, p. 115) is extended to the fully compressible Navier– Stokes equations, with the aims of clarifying (i) the nature of the energy conversions taking place in turbulent thermally stratified fluids; and (ii) the role of surface buoyancy fluxes in the Munk & Wunsch (Deep-Sea Res., vol. 45, 1998, p. 1977) constraint on the mechanical energy sources of stirring required to maintain diapycnal mixing in the oceans. The new framework reveals that the observed turbulent rate of increase in the background gravitational potential energy GPEr , commonly thought to occur at the expense of the diffusively dissipated APE, actually occurs at the expense of internal energy, as in the laminar case. The APE dissipated by molecular diffusion, on the other hand, is found to be converted into internal energy (IE), similar to the viscously dissipated kinetic energy KE. Turbulent stirring, therefore, does not introduce a new APE/GPEr mechanical-to-mechanical energy conversion, but simply enhances the existing IE/GPEr conversion rate, in addition to enhancing the viscous dissipation and the entropy production rates. This, in turn, implies that molecular diffusion contributes to the dissipation of the available mechanical energy ME =APE +KE, along with viscous dissipation. This result has important implications for the interpretation of the concepts of mixing efficiency γmixing and flux Richardson number Rf , for which new physically based definitions are proposed and contrasted with previous definitions. The new framework allows for a more rigorous and general re-derivation from the first principles of Munk & Wunsch (1998, hereafter MW98)’s constraint, also valid for a non-Boussinesq ocean: G(KE) ≈ 1 − ξ Rf ξ Rf Wr, forcing = 1 + (1 − ξ )γmixing ξ γmixing Wr, forcing , where G(KE) is the work rate done by the mechanical forcing, Wr, forcing is the rate of loss of GPEr due to high-latitude cooling and ξ is a nonlinearity parameter such that ξ =1 for a linear equation of state (as considered by MW98), but ξ <1 otherwise. The most important result is that G(APE), the work rate done by the surface buoyancy fluxes, must be numerically as large as Wr, forcing and, therefore, as important as the mechanical forcing in stirring and driving the oceans. As a consequence, the overall mixing efficiency of the oceans is likely to be larger than the value γmixing =0.2 presently used, thereby possibly eliminating the apparent shortfall in mechanical stirring energy that results from using γmixing =0.2 in the above formula.
Resumo:
There exist two central measures of turbulent mixing in turbulent stratified fluids that are both caused by molecular diffusion: 1) the dissipation rate D(APE) of available potential energy APE; 2) the turbulent rate of change Wr, turbulent of background gravitational potential energy GPEr. So far, these two quantities have often been regarded as the same energy conversion, namely the irreversible conversion of APE into GPEr, owing to the well known exact equality D(APE)=Wr, turbulent for a Boussinesq fluid with a linear equation of state. Recently, however, Tailleux (2009) pointed out that the above equality no longer holds for a thermally-stratified compressible, with the ratio ξ=Wr, turbulent/D(APE) being generally lower than unity and sometimes even negative for water or seawater, and argued that D(APE) and Wr, turbulent actually represent two distinct types of energy conversion, respectively the dissipation of APE into one particular subcomponent of internal energy called the "dead" internal energy IE0, and the conversion between GPEr and a different subcomponent of internal energy called "exergy" IEexergy. In this paper, the behaviour of the ratio ξ is examined for different stratifications having all the same buoyancy frequency N vertical profile, but different vertical profiles of the parameter Υ=α P/(ρCp), where α is the thermal expansion coefficient, P the hydrostatic pressure, ρ the density, and Cp the specific heat capacity at constant pressure, the equation of state being that for seawater for different particular constant values of salinity. It is found that ξ and Wr, turbulent depend critically on the sign and magnitude of dΥ/dz, in contrast with D(APE), which appears largely unaffected by the latter. These results have important consequences for how the mixing efficiency should be defined and measured in practice, which are discussed.
Resumo:
Intercontinental Transport of Ozone and Precursors (ITOP) (part of International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)) was an intense research effort to measure long-range transport of pollution across the North Atlantic and its impact on O3 production. During the aircraft campaign plumes were encountered containing large concentrations of CO plus other tracers and aerosols from forest fires in Alaska and Canada. A chemical transport model, p-TOMCAT, and new biomass burning emissions inventories are used to study the emissions long-range transport and their impact on the troposphere O3 budget. The fire plume structure is modeled well over long distances until it encounters convection over Europe. The CO values within the simulated plumes closely match aircraft measurements near North America and over the Atlantic and have good agreement with MOPITT CO data. O3 and NOx values were initially too great in the model plumes. However, by including additional vertical mixing of O3 above the fires, and using a lower NO2/CO emission ratio (0.008) for boreal fires, O3 concentrations are reduced closer to aircraft measurements, with NO2 closer to SCIAMACHY data. Too little PAN is produced within the simulated plumes, and our VOC scheme's simplicity may be another reason for O3 and NOx model-data discrepancies. In the p-TOMCAT simulations the fire emissions lead to increased tropospheric O3 over North America, the north Atlantic and western Europe from photochemical production and transport. The increased O3 over the Northern Hemisphere in the simulations reaches a peak in July 2004 in the range 2.0 to 6.2 Tg over a baseline of about 150 Tg.
Resumo:
This paper presents a first attempt to estimate mixing parameters from sea level observations using a particle method based on importance sampling. The method is applied to an ensemble of 128 members of model simulations with a global ocean general circulation model of high complexity. Idealized twin experiments demonstrate that the method is able to accurately reconstruct mixing parameters from an observed mean sea level field when mixing is assumed to be spatially homogeneous. An experiment with inhomogeneous eddy coefficients fails because of the limited ensemble size. This is overcome by the introduction of local weighting, which is able to capture spatial variations in mixing qualitatively. As the sensitivity of sea level for variations in mixing is higher for low values of mixing coefficients, the method works relatively well in regions of low eddy activity.