971 resultados para p-median problem
Resumo:
To comply with natural gas demand growth patterns and Europe´s import dependency, the gas industry needs to organize an efficient upstream infrastructure. The best location of Gas Supply Units – GSUs and the alternative transportation mode – by phisical or virtual pipelines, are the key of a successful industry. In this work we study the optimal location of GSUs, as well as determining the most efficient allocation from gas loads to sources, selecting the best transportation mode, observing specific technical restrictions and minimizing system total costs. For the location of GSUs on system we use the P-median problem, for assigning gas demands nodes to source facilities we use the classical transportation problem. The developed model is an optimisation-based approach, based on a Lagrangean heuristic, using Lagrangean relaxation for P-median problems – Simple Lagrangean Heuristic. The solution of this heuristic can be improved by adding a local search procedure - the Lagrangean Reallocation Heuristic. These two heuristics, Simple Lagrangean and Lagrangean Reallocation, were tested on a realistic network - the primary Iberian natural gas network, organized with 65 nodes, connected by physical and virtual pipelines. Computational results are presented for both approaches, showing the location gas sources and allocation loads arrangement, system total costs and gas transportation mode.
Resumo:
The subgradient optimization method is a simple and flexible linear programming iterative algorithm. It is much simpler than Newton's method and can be applied to a wider variety of problems. It also converges when the objective function is non-differentiable. Since an efficient algorithm will not only produce a good solution but also take less computing time, we always prefer a simpler algorithm with high quality. In this study a series of step size parameters in the subgradient equation is studied. The performance is compared for a general piecewise function and a specific p-median problem. We examine how the quality of solution changes by setting five forms of step size parameter.
Resumo:
Solutions to combinatorial optimization problems, such as problems of locating facilities, frequently rely on heuristics to minimize the objective function. The optimum is sought iteratively and a criterion is needed to decide when the procedure (almost) attains it. Pre-setting the number of iterations dominates in OR applications, which implies that the quality of the solution cannot be ascertained. A small, almost dormant, branch of the literature suggests using statistical principles to estimate the minimum and its bounds as a tool to decide upon stopping and evaluating the quality of the solution. In this paper we examine the functioning of statistical bounds obtained from four different estimators by using simulated annealing on p-median test problems taken from Beasley’s OR-library. We find the Weibull estimator and the 2nd order Jackknife estimator preferable and the requirement of sample size to be about 10 being much less than the current recommendation. However, reliable statistical bounds are found to depend critically on a sample of heuristic solutions of high quality and we give a simple statistic useful for checking the quality. We end the paper with an illustration on using statistical bounds in a problem of locating some 70 distribution centers of the Swedish Post in one Swedish region.
Resumo:
Solutions to combinatorial optimization, such as p-median problems of locating facilities, frequently rely on heuristics to minimize the objective function. The minimum is sought iteratively and a criterion is needed to decide when the procedure (almost) attains it. However, pre-setting the number of iterations dominates in OR applications, which implies that the quality of the solution cannot be ascertained. A small branch of the literature suggests using statistical principles to estimate the minimum and use the estimate for either stopping or evaluating the quality of the solution. In this paper we use test-problems taken from Baesley's OR-library and apply Simulated Annealing on these p-median problems. We do this for the purpose of comparing suggested methods of minimum estimation and, eventually, provide a recommendation for practioners. An illustration ends the paper being a problem of locating some 70 distribution centers of the Swedish Post in a region.
Resumo:
The p-median problem is often used to locate p service centers by minimizing their distances to a geographically distributed demand (n). The optimal locations are sensitive to geographical context such as road network and demand points especially when they are asymmetrically distributed in the plane. Most studies focus on evaluating performances of the p-median model when p and n vary. To our knowledge this is not a very well-studied problem when the road network is alternated especially when it is applied in a real world context. The aim in this study is to analyze how the optimal location solutions vary, using the p-median model, when the density in the road network is alternated. The investigation is conducted by the means of a case study in a region in Sweden with an asymmetrically distributed population (15,000 weighted demand points), Dalecarlia. To locate 5 to 50 service centers we use the national transport administrations official road network (NVDB). The road network consists of 1.5 million nodes. To find the optimal location we start with 500 candidate nodes in the network and increase the number of candidate nodes in steps up to 67,000. To find the optimal solution we use a simulated annealing algorithm with adaptive tuning of the temperature. The results show that there is a limited improvement in the optimal solutions when nodes in the road network increase and p is low. When p is high the improvements are larger. The results also show that choice of the best network depends on p. The larger p the larger density of the network is needed.
Resumo:
The p-median problem is often used to locate P service facilities in a geographically distributed population. Important for the performance of such a model is the distance measure. Distance measure can vary if the accuracy of the road network varies. The rst aim in this study is to analyze how the optimal location solutions vary, using the p-median model, when the road network is alternated. It is hard to nd an exact optimal solution for p-median problems. Therefore, in this study two heuristic solutions are applied, simulating annealing and a classic heuristic. The secondary aim is to compare the optimal location solutions using dierent algorithms for large p-median problem. The investigation is conducted by the means of a case study in a rural region with an asymmetrically distributed population, Dalecarlia. The study shows that the use of more accurate road networks gives better solutions for optimal location, regardless what algorithm that is used and regardless how many service facilities that is optimized for. It is also shown that the simulated annealing algorithm not just is much faster than the classic heuristic used here, but also in most cases gives better location solutions.
Resumo:
The quality of a heuristic solution to a NP-hard combinatorial problem is hard to assess. A few studies have advocated and tested statistical bounds as a method for assessment. These studies indicate that statistical bounds are superior to the more widely known and used deterministic bounds. However, the previous studies have been limited to a few metaheuristics and combinatorial problems and, hence, the general performance of statistical bounds in combinatorial optimization remains an open question. This work complements the existing literature on statistical bounds by testing them on the metaheuristic Greedy Randomized Adaptive Search Procedures (GRASP) and four combinatorial problems. Our findings confirm previous results that statistical bounds are reliable for the p-median problem, while we note that they also seem reliable for the set covering problem. For the quadratic assignment problem, the statistical bounds has previously been found reliable when obtained from the Genetic algorithm whereas in this work they found less reliable. Finally, we provide statistical bounds to four 2-path network design problem instances for which the optimum is currently unknown.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The problem of "exit against a flow" for dynamical systems subject to small Gaussian white noise excitation is studied. Here the word "flow" refers to the behavior in phase space of the unperturbed system's state variables. "Exit against a flow" occurs if a perturbation causes the phase point to leave a phase space region within which it would normally be confined. In particular, there are two components of the problem of exit against a flow:
i) the mean exit time
ii) the phase-space distribution of exit locations.
When the noise perturbing the dynamical systems is small, the solution of each component of the problem of exit against a flow is, in general, the solution of a singularly perturbed, degenerate elliptic-parabolic boundary value problem.
Singular perturbation techniques are used to express the asymptotic solution in terms of an unknown parameter. The unknown parameter is determined using the solution of the adjoint boundary value problem.
The problem of exit against a flow for several dynamical systems of physical interest is considered, and the mean exit times and distributions of exit positions are calculated. The systems are then simulated numerically, using Monte Carlo techniques, in order to determine the validity of the asymptotic solutions.
Resumo:
This study investigated the relationship between higher education and the requirement of the world of work with an emphasis on the effect of problem-based learning (PBL) on graduates' competencies. The implementation of full PBL method is costly (Albanese & Mitchell, 1993; Berkson, 1993; Finucane, Shannon, & McGrath, 2009). However, the implementation of PBL in a less than curriculum-wide mode is more achievable in a broader context (Albanese, 2000). This means higher education institutions implement only a few PBL components in the curriculum. Or a teacher implements a few PBL components at the courses level. For this kind of implementation there is a need to identify PBL components and their effects on particular educational outputs (Hmelo-Silver, 2004; Newman, 2003). So far, however there has been little research about this topic. The main aims of this study were: (1) to identify each of PBL components which were manifested in the development of a valid and reliable PBL implementation questionnaire and (2) to determine the effect of each identified PBL component to specific graduates' competencies. The analysis was based on quantitative data collected in the survey of medicine graduates of Gadjah Mada University, Indonesia. A total of 225 graduates responded to the survey. The result of confirmatory factor analysis (CFA) showed that all individual constructs of PBL and graduates' competencies had acceptable GOFs (Goodness-of-fit). Additionally, the values of the factor loadings (standardize loading estimates), the AVEs (average variance extracted), CRs (construct reliability), and ASVs (average shared squared variance) showed the proof of convergent and discriminant validity. All values indicated valid and reliable measurements. The investigation of the effects of PBL showed that each PBL component had specific effects on graduates' competencies. Interpersonal competencies were affected by Student-centred learning (β = .137; p < .05) and Small group components (β = .078; p < .05). Problem as stimulus affected Leadership (β = .182; p < .01). Real-world problems affected Personal and organisational competencies (β = .140; p < .01) and Interpersonal competencies (β = .114; p < .05). Teacher as facilitator affected Leadership (β = 142; p < .05). Self-directed learning affected Field-related competencies (β = .080; p < .05). These results can help higher education institution and educator to have informed choice about the implementation of PBL components. With this information higher education institutions and educators could fulfil their educational goals and in the same time meet their limited resources. This study seeks to improve prior studies' research method in four major ways: (1) by indentifying PBL components based on theory and empirical data; (2) by using latent variables in the structural equation modelling instead of using a variable as a proxy of a construct; (3) by using CFA to validate the latent structure of the measurement, thus providing better evidence of validity; and (4) by using graduate survey data which is suitable for analysing PBL effects in the frame work of the relationship between higher education and the world of work.
Resumo:
Syftet med studien var att undersöka hur ett antal grundskolelärare beskriver sin egen undervisning i matematik och hur de arbetar med problemlösning i matematik. Forskningsfrågan som jag formulerade för att nå mitt syfte var: Vad har lärarna för erfarenheter och inställning till matematik och vilket tillvägagångssätt använder de för att nå eleverna med problemlösning? För att få svar på min forskningsfråga valde jag en hermeneutisk metod då jag arbetade med enkäter och intervjuer. Datainsamlingsmetoden var dels 21 enkätsvar och dels 5 intervjuer med verksamma matematiklärare. I studien skildras hur mina informanter beskriver sin undervisning i matematik och hur de arbetar med problemlösning. Läromedlet styr ofta undervisningen men alla arbetar bredvid läromedlet på olika sätt, bland annat genom problemlösning. Kommunikation mellan lärare och elever samt mellan elever och elever är något som genomsyrar hela denna studie. Ett resultat av studien är att elever via matematiska problem lär sig för livet. I vardagen löser både elever och vuxna människor vardagliga problem och matematiska problem ger eleven metoder för att finna lösning på ett problem även om det inte har med matematik att göra. Många av informanterna hänvisade också till läroplanen och kursplanen där det faktiskt står att elever skall lösa problem för att fungera som individer i det samhälle vi lever i. Mina informanters syn på problemlösning stämmer väl överens med vad som står i gällande styrdokument. Enligt informanterna är det är väldigt flexibelt hur man kan undervisa i problemlösning även om tillvägagångssätten ofta liknar varandra. Allt från att arbeta enskilt till klassvis förekom och infallsvinklarna för att finna problemlösning var många. Läromedel, internetsidor och arbetsmaterial från många olika håll användes för att arbeta med problemlösning.
Resumo:
Många projekt misslyckas och en av anledningarna är dålig styrning av projektet i allmänhet och inom IT branschen i synnerhet. Baserad på kritik av de traditionella metoderna under de senaste åren, så har det uppkommit flera lättrörliga metoder som kallas Agila metoder. Scrum är den mest kända Agila metoden som används idag. Metoden lovar goda resultat, men i en artikel ur tidningen Computer Sweden (feb 2009) står det ”siffror visar att nio av tio Scrumprojekt misslyckas”. Artikeln triggade vårt intresse av att ta reda på vilka problem specifika för Scrum som många har kritiserat och valde därför att rikta in vår studie mot detta. Uppsatsen syftar till att undersöka om lokala IT-företag i Borlänge, Headlight, Sogeti ochstatliga nätkapacitetleverantören Trafikverket ICT lider av det allmänna problem som de andra Scrumanvändarna upplever i samband med användningen av metoden. Denna uppsats har fokus på fyra problemområden: bristfällig dokumentation, sämre effektivitet i arbetsprocessen, sämre effektivitet i arbetsprocessen i stora projekt samt bristande stöd för utvärdering. För vår studie har litteraturstudier och intervjuer genomförts. Intervjuserier gjordes på elva personer hos våra fallföretag. Målgruppen för våra intervjuer är Product Owner (PO) ScrumMaster (SM) och utvecklare. Vi kan efter genomförd studie dra slutsatsen att de allmänna upplevda problem som de andra Scrumanvändaren upplever har vi även kunnat identifiera hos våra fallföretag. Resultaten har bekräftats med insamlade data och vår teoretiska ram. I diskussionen presenterar vi rekommendationer för att undvik relaterade problem med Scrum.
Resumo:
Combinatorial optimization problems, are one of the most important types of problems in operational research. Heuristic and metaheuristics algorithms are widely applied to find a good solution. However, a common problem is that these algorithms do not guarantee that the solution will coincide with the optimum and, hence, many solutions to real world OR-problems are afflicted with an uncertainty about the quality of the solution. The main aim of this thesis is to investigate the usability of statistical bounds to evaluate the quality of heuristic solutions applied to large combinatorial problems. The contributions of this thesis are both methodological and empirical. From a methodological point of view, the usefulness of statistical bounds on p-median problems is thoroughly investigated. The statistical bounds have good performance in providing informative quality assessment under appropriate parameter settings. Also, they outperform the commonly used Lagrangian bounds. It is demonstrated that the statistical bounds are shown to be comparable with the deterministic bounds in quadratic assignment problems. As to empirical research, environment pollution has become a worldwide problem, and transportation can cause a great amount of pollution. A new method for calculating and comparing the CO2-emissions of online and brick-and-mortar retailing is proposed. It leads to the conclusion that online retailing has significantly lesser CO2-emissions. Another problem is that the Swedish regional division is under revision and the border effect to public service accessibility is concerned of both residents and politicians. After analysis, it is shown that borders hinder the optimal location of public services and consequently the highest achievable economic and social utility may not be attained.
Resumo:
Optimal location on the transport infrastructure is the preferable requirement for many decision making processes. Most studies have focused on evaluating performances of optimally locate p facilities by minimizing their distances to a geographically distributed demand (n) when p and n vary. The optimal locations are also sensitive to geographical context such as road network, especially when they are asymmetrically distributed in the plane. The influence of alternating road network density is however not a very well-studied problem especially when it is applied in a real world context. This paper aims to investigate how the density level of the road network affects finding optimal location by solving the specific case of p-median location problem. A denser network is found needed when a higher number of facilities are to locate. The best solution will not always be obtained in the most detailed network but in a middle density level. The solutions do not further improve or improve insignificantly as the density exceeds 12,000 nodes, some solutions even deteriorate. The hierarchy of the different densities of network can be used according to location and transportation purposes and increase the efficiency of heuristic methods. The method in this study can be applied to other location-allocation problem in transportation analysis where the road network density can be differentiated.
Resumo:
To have good data quality with high complexity is often seen to be important. Intuition says that the higher accuracy and complexity the data have the better the analytic solutions becomes if it is possible to handle the increasing computing time. However, for most of the practical computational problems, high complexity data means that computational times become too long or that heuristics used to solve the problem have difficulties to reach good solutions. This is even further stressed when the size of the combinatorial problem increases. Consequently, we often need a simplified data to deal with complex combinatorial problems. In this study we stress the question of how the complexity and accuracy in a network affect the quality of the heuristic solutions for different sizes of the combinatorial problem. We evaluate this question by applying the commonly used p-median model, which is used to find optimal locations in a network of p supply points that serve n demand points. To evaluate this, we vary both the accuracy (the number of nodes) of the network and the size of the combinatorial problem (p). The investigation is conducted by the means of a case study in a region in Sweden with an asymmetrically distributed population (15,000 weighted demand points), Dalecarlia. To locate 5 to 50 supply points we use the national transport administrations official road network (NVDB). The road network consists of 1.5 million nodes. To find the optimal location we start with 500 candidate nodes in the network and increase the number of candidate nodes in steps up to 67,000 (which is aggregated from the 1.5 million nodes). To find the optimal solution we use a simulated annealing algorithm with adaptive tuning of the temperature. The results show that there is a limited improvement in the optimal solutions when the accuracy in the road network increase and the combinatorial problem (low p) is simple. When the combinatorial problem is complex (large p) the improvements of increasing the accuracy in the road network are much larger. The results also show that choice of the best accuracy of the network depends on the complexity of the combinatorial (varying p) problem.