945 resultados para oxidation of methionine, oxidative stress


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Intermedin (IMD), a novel cardiac peptide related to adrenomedullin (AM), protects against myocardial ischemia-reperfusion injury and attenuates ventricular remodelling. IMD’s actions are mediated by a calcitonin receptor-like receptor in association with receptor activity modifying proteins (RAMPs 1-3). Aim/method: using the spontaneously hypertensive rat (SHR) and normotensive Wistar Kyoto (WKY) rat at 20 weeks of age, to examine (i) the presence of myocardial oxidative stress and concentric hypertrophy; (ii) expression of IMD, AM and receptor components. Results: In left and right ventricular cardiomyocytes from SHR vs. WKY cell width (26% left, 15% right) and mRNA expression of hypertrophic markers ANP (2.7 fold left, 2.7 fold right) and BNP (2.2 fold left, 2.0 fold right) were enhanced. In left ventricular cardiomyocytes only (i) oxidative stress was indicated by increased membrane protein carbonyl content (71%) and augmented production of O2- anion (64%); (ii) IMD (6.8 fold), RAMP1 (2.5 fold) and RAMP3 (2.0 fold) mRNA was increased while AM and RAMP2 mRNA was not altered; (iii) abundance of RAMP1 (by 48%), RAMP2 (by 41%) and RAMP3 (by 90%) monomers in cell membranes was decreased. Conclusion: robust augmentation of IMD expression in hypertrophied left ventricular cardiomyocytes indicates a prominent role for this counter-regulatory peptide in the adaptation of the SHR myocardium to the stresses imposed by chronic hypertension. The local concentration and action of IMD may be further enhanced by down-regulation of NEP within the left ventricle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a new technique for quantifying methionine sulfoxide (MetSO) in protein to assess levels of oxidative stress in physiological systems. In this procedure, samples are hydrolyzed with methanesulfonic acid (MSA) in order to avoid the conversion of MetSO to methionine (Met) that occurs during hydrolysis of protein in HCl. The hydrolysate is fractionated on a cation exchange column to remove the nonvolatile MSA from amino acids, and the amino acids are then derivatized as their trimethylsilyl esters for analysis by selected ion monitoring-gas chromatography/mass spectrometry. The limit of detection of the assay is 200 pmol of MetSO per analysis, and the interassay coefficient of variation is 5.8%. Compared to current methods, the SIM-GC/MS assay avoids the potential for conversion of Met to MetSO during sample preparation, requires less sample preparation time, has lower variability, and uses mass spectrometry for sensitive and specific analyte detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Communication of antibiotic resistance among bacteria via small molecules is implicated in transient reduction of bacterial susceptibility to antibiotics, which could lead to therapeutic failures aggravating the problem of antibiotic resistance. Released putrescine from the extremely antibiotic resistant bacterium Burkholderia cenocepacia protects less resistant cells from different species against the antimicrobial peptide polymyxin B (PmB). Exposure of B. cenocepacia to sub-lethal concentrations of PmB and other bactericidal antibiotics induce reactive oxygen species (ROS) production and expression of the oxidative stress response regulator OxyR. We evaluated whether putrescine alleviates antibiotic-induced oxidative stress. The accumulation of intracellular ROS such as superoxide ion and hydrogen peroxide was assessed fluorometrically with dichlorofluorescein diacetate, while the expression of OxyR and putrescine synthesis enzymes was determined in luciferase assays using chromosomal promoter-lux reporter system fusions. We evaluated wild type and isogenic deletion mutant strains with defects in putrescine biosynthesis after exposure to sub-lethal concentrations of PmB and other bactericidal antibiotics. Exogenous putrescine protected against oxidative stress induced by PmB and other antibiotics, whereas reduced putrescine synthesis resulted in increased ROS generation, and a parallel increased sensitivity to PmB. Of the 3 B. cenocepacia putrescine synthesizing enzymes, PmB induced only BCAL2641, an ornithine decarboxylase. This study exposes BCAL2641 as a critical component of the putrescine-mediated communication of antibiotic resistance, and as a plausible target for designing inhibitors that would block the communication of such resistance among different bacteria, ultimately reducing the window of therapeutic failure in treating bacterial infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamate excitotoxicity is implicated in the aetiology of amyotrophic lateral sclerosis (ALS) with impairment of glutamate transport into astrocytes a possible cause of glutamate-induced injury to motor neurons. It is possible that mutations of Cu/Zn superoxide dismutase (SOD1), responsible for about 20% of familial ALS, down-regulates glutamate transporters via oxidative stress. We transfected primary mouse astrocytes to investigate the effect of the FALS-linked mutant hSOD1(G93A) and wild-type SOD1 (hSOD1(wt)) on the glutamate uptake system. Using western blotting, immunocytochemistry and RT-PCR it was shown that expression of either hSOD1(G93A) or hSOD1(wt) in astrocytes produced down-regulation of the levels of a glutamate transporter GLT-1, without alterations in its mRNA level. hSOD1(G93A) or hSOD1(wt) expression caused a decrease of the monomeric form of GLT-1 without increasing oxidative multimers of GLT-1. The effects were selective to GLT-1, since another glutamate transporter GLAST protein and mRNA levels were not altered. Reflecting the decrease in GLT-1 protein, [H-3]D-aspartate uptake was reduced in cultures expressing hSOD1(G93A) or hSOD1(wt). The hSOD1-induced decline in GLT-1 protein and [H-3]D-aspartate uptake was not blocked by the antioxidant Trolox nor potentiated by antioxidant depletion using catalase and glutathione peroxidase inhibitors. Measurement of 2',7'-dichlorofluorescein (DCF)-induced fluorescence revealed that expression of hSOD1(G93A) or hSOD1(wt) in astrocytes does not lead to detectable increase of intracellular reactive oxygen species. This study suggests that levels of GLT-1 protein in astrocytes are reduced rapidly by overexpression of hSOD1, and is due to a property shared between the wild-type and G93A mutant form, but does not involve the production of intracellular oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: To investigate the effect of the oxidative stress of ozone on the microbial inactivation, cell membrane integrity and permeability and morphology changes of Escherichia coli. Methods and Results: Escherichia coli BW 25113 and its isogenic mutants in soxR, soxS, oxyR, rpoS and dnaK genes were treated with ozone at a concentration of 6 lg ml)1 for a period up to 240 s. A significant effect of ozone exposure on microbial inactivation was observed. After ozonation, minor effects on the cell membrane integrity and permeability were observed, while scanning electron microscopy analysis showed slightly altered cell surface structure. Conclusions: The results of this study suggest that cell lysis was not the major mechanism of microbial inactivation. The deletion of oxidative stress–related genes resulted in increased susceptibility of E. coli cells to ozone treatment, implying that they play an important role for protection against the radicals produced by ozone. However, DnaK that has previously been shown to protect against oxidative stress did not protect against ozone treatment in this study. Furthermore, RpoS was important for the survival against ozone. Significance and Impact of the Study: This study provides important information about the role of oxidative stress in the responses of E. coli during ozonation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein malnutrition leads to functional impairment in several organs, which is not fully restored with nutritional recovery. Little is known about the role of oxidative stress in the genesis of these alterations. This study was designed to assess the sensitivity of blood oxidative stress biomarkers to a dietary protein restriction. Male Wistar rats were divided into two groups, according to the diet fed from weaning (21 days) to 60 day old: normal protein (17% protein) and low protein (6% protein). Serum protein, albumin, free fatty acid and liver glycogen and lipids were evaluated to assess the nutritional status. Blood glutathione reductase (GR) and catalase (CAT) activities, plasma total sulfhydryl groups concentration (TSG) as well as plasma thiobarbituric acid reactive substances (TBARs) and reactive carbonyl derivatives (RCD) were measured as biomarkers of the antioxidant system and oxidative damage, respectively. The glucose metabolism in soleus muscle was also evaluated as an index of stress severity imposed to muscular mass by protein malnutrition. No difference was observed in muscle glucose metabolism or plasma RCD concentration between both groups. However, our results showed that the low protein group had higher plasma TBARs (62%) concentration and lower TSG (44%) concentration than control group, indicating increased reactive oxygen species production in low protein group. The enhancement of erythrocyte GR (29%) and CAT (28%) activities in this group also suggest an adaptation to the stress generated by the protein deficiency. Taken together, the results presented here show that the biomarkers used were able to reflect the oxidative stress level induced by this specific protein deficient diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the effect of the oxidative stress on human dental pulp cells (HDPCs) promoted by toxic concentrations of hydrogen peroxide (H2O2) on its odontoblastic differentiation capability through time. Methods HDPCs were exposed to two different concentrations of H2O2 (0.1 and 0.3 μg/ml) for 30 min. Thereafter, cell viability (MTT assay) and oxidative stress generation (H2DCFDA fluorescence assay) were immediately evaluated. Data were compared with those for alkaline phosphatase (ALP) activity (thymolphthalein assay) and mineralized nodule deposition (alizarin red) by HDPCs cultured for 7 days in osteogenic medium. Results A significant reduction in cell viability and oxidative stress generation occurred in the H2O2-treated cells when compared with negative controls (no treatment), in a concentration-dependent fashion. Seven days after H2O2 treatment, the cells showed significant reduction in ALP activity compared with negative control and no mineralized nodule deposition. Conclusion Both concentrations of H2O2 were toxic to the cells, causing intense cellular oxidative stress, which interfered with the odontogenic differentiation capability of the HDPCs. Clinical significance The intense oxidative stress on HDPCs mediated by H2O2 at toxic concentrations promotes intense reduction on odontoblastic differentiation capability in a 7-day evaluation period, which may alter the initial pulp healing capability in the in vivo situation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: The study investigated the in vivo antioxidant activity and the in vitro radical scavenging capacity of the Combretum lanceolatum Pohl (Combretaceae) flowers ethanolic extract (ClEtOH) in streptozotocin-diabetic rats. Place and Duration of Study: Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Brazil; between February 2012 and December 2012. Methodology: Male Wistar rats were divided into four groups: Normal rats treated with water/vehicle (N); diabetic rats treated with water (DC); diabetic rats treated with 250 mg/kg (DT250) or with 500mg/kg (DT500) of ClEtOH. After 21 days of treatment, liver samples were used for the analysis of the oxidative stress biomarkers and activity of antioxidant enzymes. In vitro radical scavenger capacity was investigated by the following methods: DPPH radical scavenging, ABTS radical cation decolorization and crocin bleaching assays. Results: Significant oxidative stress was observed in liver of DC, since the malondialdehyde (MDA, biomarker of lipoperoxidation) levels were increased in comparison with N. Increased activities of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were also observed in DC, which could represent a compensatory mechanism against oxidative stress. Glutathione (GSH) levels were lower and similar between N and DC. The MDA levels were significantly decreased in liver of rats from DT250 and DT500, reaching levels similar those of N, suggesting that ClEtOH prevented lipoperoxidation. The treatment of diabetic rats with ClEtOH also increased the GSH levels, as well as increased the GSH-Px activity, and did not change the SOD activity. The results of in vitro radical scavenging capacity indicated that ClEtOH is highly active. Conclusion: These findings indicate that ClEtOH has antioxidant properties in liver of diabetic rats, decreasing lipoperoxidation and increasing the endogenous antioxidant responses. Both the antihyperglycemic effect and the capacity to scavenge free radicals may be related to the antioxidant activity of ClEtOH in diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SET protein (I2PP2A) is an inhibitor of PP2A, which regulates the phosphorylated Akt (protein kinase B) levels. We assessed the effects of SET overexpression in HEK293T cells, both in the presence and the absence of mild oxidative stress induced by 50 mu M tert-butyl hydroperoxide. Immunoblotting assays demonstrated that SET accumulated in HEK293T cells and increased the levels of phosphorylated Akt and PTEN; in addition, SET decreased glutathione antioxidant defense of cell and increased expression of genes encoding antioxidant defense proteins. Immunofluorescence analysis demonstrated that accumulated SET was equally distributed in cytoplasm and nucleus; however, in cells that had been exposed to oxidative stress, SET was found in large aggregates in the cytoplasm. SET accumulation in HEK293T cells correlated with inhibition of basal apoptosis as evidenced by a decrease in annexin V staining and activity of caspases; under mild oxidative stress, SET accumulation correlated with caspase-independent cell death, as evidenced by increased PI and annexin V/PI double staining. The results suggest that accumulated SET could act via Akt/PTEN either as cell survival signal or as oxidative stress sensor for cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). Methods: We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 mu g/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 mu L) injection into the 4th V. Results: Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. Conclusion: We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This case-control study involved a total of 29 autistic children (Au) aged 6 to 12 years, and 28 gender and age-matched typically developing children (TD). We evaluated a high number of peripheral oxidative stress parameters, erythrocyte and lymphocyte membrane functional features and membrane lipid composition of erythrocyte. Erythrocyte TBARS, Peroxiredoxin II, Protein Carbonyl Groups and urinary HEL and isoprostane levels were elevated in AU (confirming an imbalance of the redox status of Au); other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma Total antioxidant capacity and plasma carbonyl groups, erythrocyte SOD and catalase activities) were unchanged, whilst peroxiredoxin I showed a trend of elevated levels in red blood cells of Au children. A very significant reduction of both erythrocyte and lymphocyte Na+, K+-ATPase activity (NKA), a reduction of erythrocyte membrane fluidity, a reduction of phospatydyl serine exposition on erythrocyte membranes, an alteration in erythrocyte fatty acid membrane profile (increase in MUFA and in ω6/ω3 ratio due to decrease in EPA and DHA) and a reduction of cholesterol content of erythrocyte membrane were found in Au compared to TD, without change in erythrocyte membrane sialic acid content and in lymphocyte membrane fluidity. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity, and ADOS and CARS score are inversely related to peroxiredoxin II levels. Oxidative stress and erythrocyte structural and functional alterations may play a role in the pathogenesis of Autism Spectrum Disorders and could be potentially utilized as peripheral biomarkers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelial progenitor cells (EPC) play a fundamental role in tissue regeneration and vascular repair. Current research suggests that EPC are more resistant to oxidative stress as compared to differentiated endothelial cells. Here we hypothesized that EPC not only possess the ability to protect themselves against oxidative stress but also confer this protection upon differentiated endothelial cells by release of paracrine factors. To test this hypothesis, HUVEC incubated with conditioned medium obtained from early EPC cultures (EPC-CM) were exposed to H2O2 to assess the accumulation of intracellular ROS, extent of apoptosis and endothelial cell functionality. Under oxidative stress conditions HUVEC treated with EPC-CM exhibited substantially lower levels of intracellular oxidative stress (0.2+/-0.02 vs. 0.4+/-0.03 relative fluorescence units, p<0.05) compared to control medium. Moreover, the incubation with EPC-CM elevated the expression level of antioxidant enzymes in HUVEC (catalase: 2.6+/-0.4; copper/zinc superoxide dismutase (Cu/ZnSOD): 1.6+/-0.1; manganese superoxide dismutase (MnSOD): 1.4+/-0.1-fold increase compared to control, all p<0.05). Furthermore, EPC-CM had the distinct potential to reverse the functional impairment of HUVEC as measured by their capability to form tubular structures in vitro. Finally, incubation of HUVEC with EPC-CM resulted in a significant reduction of apoptosis (0.34+/-0.01 vs. 1.52+/-0.12 relative fluorescence units, p<0.01) accompanied by an increased expression ratio of the anti/pro-apoptotic factors Bcl-2/Bax to 2.9+/-0.7-fold (compared to control, p<0.05). Most importantly, neutralization of selected cytokines such as VEGF, HGF, IL-8 and MMP-9 did not significantly reverse the cyto-protective effect of EPC-CM (p>0.05), suggesting that soluble factors secreted by EPC, possibly via broad synergistic actions, exert strong cyto-protective properties on differentiated endothelium through modulation of intracellular antioxidant defensive mechanisms and pro-survival signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antioxidant treatment has previously been shown to be neuroprotective in experimental bacterial meningitis. To obtain quantitative evidence for oxidative stress in this disease, we measured the major brain antioxidants ascorbate and reduced glutathione, and the lipid peroxidation endproduct malondialdehyde in the cortex of infant rats infected with Streptococcus pneumoniae. Cortical levels of the two antioxidants were markedly decreased 22 h after infection, when animals were severely ill. Total pyridine nucleotide levels in the cortex were unaltered, suggesting that the loss of the two antioxidants was not due to cell necrosis. Bacterial meningitis was accompanied by a moderate, significant increase in cortical malondialdehyde. While treatment with either of the antioxidants alpha-phenyl-tert-butyl nitrone or N-acetylcysteine significantly inhibited this increase, only the former attenuated the loss of endogenous antioxidants. Cerebrospinal fluid bacterial titer, nitrite and nitrate levels, and myeloperoxidase activity at 18 h after infection were unaffected by antioxidant treatment, suggesting that they acted by mechanisms other than modulation of inflammation. The results demonstrate that bacterial meningitis is accompanied by oxidative stress in the brain parenchyma. Furthermore, increased cortical lipid peroxidation does not appear to be the result of parenchymal oxidative stress, because it was prevented by NAC, which had no effect on the loss of brain antioxidants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron regulatory protein-1 (IRP-1), a central cytoplasmic regulator of cellular iron metabolism, is rapidly activated by oxidative stress to bind to mRNA iron-responsive elements. We have reconstituted the response of IRP-1 to extracellular H2O2 in a system derived from murine B6 fibroblasts permeabilized with streptolysin-O. This procedure allows separation of the cytosol from the remainder of the cells (cell pellet). IRP-1 in the cytosolic fraction fails to be directly activated by addition of H2O2. IRP-1 activation requires the presence of a nonsoluble, possibly membrane-associated component in the cell pellet. The streptolysin-O-based in vitro system faithfully recapitulates characteristic hallmarks of IRP-1 activation by H2O2 in intact cells. We show that the H2O2-mediated activation of IRP-1 is temperature dependent and sensitive to treatment with calf intestinal alkaline phosphatase (CIAP). Although IRP-1 activation is unaffected by addition of excess ATP or GTP to this in vitro system, it is negatively affected by the nonhydrolyzable nucleotide analogs adenylyl-imidodiphosphate and guanylyl-imidophosphate and completely blocked by ATP-γS and GTP-γS. The in vitro reconstitution of this oxidative stress-induced pathway has opened a different avenue for the biochemical dissection of the regulation of mammalian iron metabolism by oxidative stress. Our data show that H2O2 must be sensed to stimulate a pathway to activate IRP-1.