271 resultados para organising


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-organizing neural networks have been implemented in a wide range of application areas such as speech processing, image processing, optimization and robotics. Recent variations to the basic model proposed by the authors enable it to order state space using a subset of the input vector and to apply a local adaptation procedure that does not rely on a predefined test duration limit. Both these variations have been incorporated into a new feature map architecture that forms an integral part of an Hybrid Learning System (HLS) based on a genetic-based classifier system. Problems are represented within HLS as objects characterized by environmental features. Objects controlled by the system have preset targets set against a subset of their features. The system's objective is to achieve these targets by evolving a behavioural repertoire that efficiently explores and exploits the problem environment. Feature maps encode two types of knowledge within HLS — long-term memory traces of useful regularities within the environment and the classifier performance data calibrated against an object's feature states and targets. Self-organization of these networks constitutes non-genetic-based (experience-driven) learning within HLS. This paper presents a description of the HLS architecture and an analysis of the modified feature map implementing associative memory. Initial results are presented that demonstrate the behaviour of the system on a simple control task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations on the standard Kohonen feature map can enable an ordering of the map state space by using only a limited subset of the complete input vector. Also it is possible to employ merely a local adaptation procedure to order the map, rather than having to rely on global variables and objectives. Such variations have been included as part of a hybrid learning system (HLS) which has arisen out of a genetic-based classifier system. In the paper a description of the modified feature map is given, which constitutes the HLSs long term memory, and results in the control of a simple maze running task are presented, thereby demonstrating the value of goal related feedback within the overall network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel extension to Kohonen's self-organising map, called the plastic self organising map (PSOM), is presented. PSOM is unlike any other network because it only has one phase of operation. The PSOM does not go through a training cycle before testing, like the SOM does and its variants. Each pattern is thus treated identically for all time. The algorithm uses a graph structure to represent data and can add or remove neurons to learn dynamic nonstationary pattern sets. The network is tested on a real world radar application and an artificial nonstationary problem.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines selected methodological insights that complexity theory might provide for planning. In particular, it focuses on the concept of fractals and, through this concept, how ways of organising policy domains across scales might have particular causal impacts. The aim of this article is therefore twofold: (a) to position complexity theory within social science through a ‘generalised discourse’, thereby orienting it to particular ontological and epistemological biases and (b) to reintroduce a comparatively new concept – fractals – from complexity theory in a way that is consistent with the ontological and epistemological biases argued for, and expand on the contribution that this might make to planning. Complexity theory is theoretically positioned as a neo-systems theory with reasons elaborated. Fractal systems from complexity theory are systems that exhibit self-similarity across scales. This concept (as previously introduced by the author in ‘Fractal spaces in planning and governance’) is further developed in this article to (a) illustrate the ontological and epistemological claims for complexity theory, and to (b) draw attention to ways of organising policy systems across scales to emphasise certain characteristics of the systems – certain distinctions. These distinctions when repeated across scales reinforce associated processes/values/end goals resulting in particular policy outcomes. Finally, empirical insights from two case studies in two different policy domains are presented and compared to illustrate the workings of fractals in planning practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar-powered vehicle activated signs (VAS) are speed warning signs powered by batteries that are recharged by solar panels. These signs are more desirable than other active warning signs due to the low cost of installation and the minimal maintenance requirements. However, one problem that can affect a solar-powered VAS is the limited power capacity available to keep the sign operational. In order to be able to operate the sign more efficiently, it is proposed that the sign be appropriately triggered by taking into account the prevalent conditions. Triggering the sign depends on many factors such as the prevailing speed limit, road geometry, traffic behaviour, the weather and the number of hours of daylight. The main goal of this paper is therefore to develop an intelligent algorithm that would help optimize the trigger point to achieve the best compromise between speed reduction and power consumption. Data have been systematically collected whereby vehicle speed data were gathered whilst varying the value of the trigger speed threshold. A two stage algorithm is then utilized to extract the trigger speed value. Initially the algorithm employs a Self-Organising Map (SOM), to effectively visualize and explore the properties of the data that is then clustered in the second stage using K-means clustering method. Preliminary results achieved in the study indicate that using a SOM in conjunction with K-means method is found to perform well as opposed to direct clustering of the data by K-means alone. Using a SOM in the current case helped the algorithm determine the number of clusters in the data set, which is a frequent problem in data clustering.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many research fields are pushing the engineering of large-scale, mobile, and open systems towards the adoption of techniques inspired by self-organisation: pervasive computing, but also distributed artificial intelligence, multi-agent systems, social networks, peer-topeer and grid architectures exploit adaptive techniques to make global system properties emerge in spite of the unpredictability of interactions and behaviour. Such a trend is visible also in coordination models and languages, whenever a coordination infrastructure needs to cope with managing interactions in highly dynamic and unpredictable environments. As a consequence, self-organisation can be regarded as a feasible metaphor to define a radically new conceptual coordination framework. The resulting framework defines a novel coordination paradigm, called self-organising coordination, based on the idea of spreading coordination media over the network, and charge them with services to manage interactions based on local criteria, resulting in the emergence of desired and fruitful global coordination properties of the system. Features like topology, locality, time-reactiveness, and stochastic behaviour play a key role in both the definition of such a conceptual framework and the consequent development of self-organising coordination services. According to this framework, the thesis presents several self-organising coordination techniques developed during the PhD course, mainly concerning data distribution in tuplespace-based coordination systems. Some of these techniques have been also implemented in ReSpecT, a coordination language for tuple spaces, based on logic tuples and reactions to events occurring in a tuple space. In addition, the key role played by simulation and formal verification has been investigated, leading to analysing how automatic verification techniques like probabilistic model checking can be exploited in order to formally prove the emergence of desired behaviours when dealing with coordination approaches based on self-organisation. To this end, a concrete case study is presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from pervasive computing paradigm, we want to face the new system's requirements, concerning, mainly, self-organisation, situatedness and adaptivity, through the definition and execution of nature-inspired patterns. They are extracted by the study of dynamics in biological systems and we consider for their implementation the biochemical tuple spaces model. In particular, the aim of the thesis is to design and realize a first biochemical extension of TuCSoN (technology based on tuple spaces model) and, then, to verify its capabilities by means of a proper case study, that deals with local self-organisation and competition of services in an open and highly-dynamic environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article reflects on the difficult relation between community work against domestic violence and local crime prevention under the conditions of the neoliberal state that cuts down on social benefits and promotes self-help, active citizenship and self-responsibility instead while at the same time restoring the punishing state with its strict regime of law-and-order. The author describes a project Tarantula - she started herself while being a social worker in Hamburg, Germany. Tarantula was aimed at strengthening social networks and the neighbours' willingness to get involved in favour of affected women. Although conceptualized as an emancipatory approach referring to community organizing in the tradition of social movements it is questionable whether and how this can really work in the current situation. At present, the field of crime control is being reconfigured as a result of political and administrative decisions, which, for their part, are based on a new structure of social relations and cultural attitudes. The demolition of the 'welfare state' means the re-coding of the security policy that facilitates the development of interventionist techniques that govern and control individuals through their own ability to act.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feature selection is an important and active issue in clustering and classification problems. By choosing an adequate feature subset, a dataset dimensionality reduction is allowed, thus contributing to decreasing the classification computational complexity, and to improving the classifier performance by avoiding redundant or irrelevant features. Although feature selection can be formally defined as an optimisation problem with only one objective, that is, the classification accuracy obtained by using the selected feature subset, in recent years, some multi-objective approaches to this problem have been proposed. These either select features that not only improve the classification accuracy, but also the generalisation capability in case of supervised classifiers, or counterbalance the bias toward lower or higher numbers of features that present some methods used to validate the clustering/classification in case of unsupervised classifiers. The main contribution of this paper is a multi-objective approach for feature selection and its application to an unsupervised clustering procedure based on Growing Hierarchical Self-Organising Maps (GHSOMs) that includes a new method for unit labelling and efficient determination of the winning unit. In the network anomaly detection problem here considered, this multi-objective approach makes it possible not only to differentiate between normal and anomalous traffic but also among different anomalies. The efficiency of our proposals has been evaluated by using the well-known DARPA/NSL-KDD datasets that contain extracted features and labelled attacks from around 2 million connections. The selected feature sets computed in our experiments provide detection rates up to 99.8% with normal traffic and up to 99.6% with anomalous traffic, as well as accuracy values up to 99.12%.