927 resultados para organic photonic materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is centered around the study of electrical and thermal properties of certain selected photonic materials.We have studied the electrical conduction mechanism in various phases of certain selected photonic materials and those associated with different phase transitions occurring in them. A phase transition leaves its own impressions on the key parameters like electrical conductivity and dielectric constant. However, the activation energy calculation reveals the dominant factor responsible for conduction process.PA measurements of thermal diffusivity in certain other important photonic materials are included in the remaining part of the research work presented in this thesis. PA technique is a promising tool for studying thermal diffusivities of solid samples in any form. Because of its crucial role and common occurrence in heat flow problems, the thermal diffusivity determination is often necessary and knowledge of thermal diffusivity can intum be used to calculate the thermal conductivity. Especially,knowledge of the thermal diffusivity of semiconductors is important due to its relation to the power dissipation problem in microelectronic and optoelectronic devices which limits their performances. More than that, the thermal properties, especially those of thin films are of growing interest in microelectronics and microsystems because of the heat removal problem involved in highly integrated devices. The prescribed chapter of the present theis demonstrates how direct measurement of thermal diffusivity can be carried out in thin films of interest in a simple and elegant manner using PA techniques. Although results of only representative measurements viz; thermal diffusivity values in Indium, Aluminium, Silver and CdS thin films are given here, evaluation of this quantity for any photonic and / electronic material can be carried out using this technique in a very simple and straight forward manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International School of Photonics, Cochin University of Science & Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International School of Photonics, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of lasers in the early sixties has not only revolutionized the field of optics and communication but also paved new ways in the field of material characterization. Material studies using photothermal techniques possess certain unique characteristics and advantages over conventional methods. The most important aspect of photothennal techniques is their ability to perform noncontact and nondestructive measurement. Photoacoustics, photothermal deflection, thermal lens, photothermal radiometry and photopyroelectric methods are some of the commonly used and powerful techniques for the thermal and optical characterization of materials using lasers. In this thesis the applications of photoacoustic and photothermal deflection techniques for the thermal and optical characterization of different photonic materials, namely, semiconductors, liquid crystals and dye-doped polymers are discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Study overviews the basics of TiO2with respect to its structure, properties and applications. A brief account of its structural, electronic and optical properties is provided. Various emerging technological applications utilising TiO2 is also discussed.Till now, exceptionally large number of fundamental studies and application-oriented research and developments has been carried out by many researchers worldwide in TiO2 with its low-dimensional nanomaterial form due to its various novel properties. These nanostructured materials have shown many favourable properties for potential applications, including pollutant photocatalytic decomposition, photovoltaic cells, sensors and so on. This thesis aims to make an in-depth investigation on different linear and nonlinear optical and structural characteristics of different phases of TiO2. Correspondingly, extensive challenges to synthesise different high quality TiO2 nanostructure derivatives such as nanotubes, nanospheres, nanoflowers etc. are continuing. Here, different nanostructures of anatase TiO2 were synthesised and analysed. Morphologically different nanostructures were found to have different impact on their physical and electronic properties such as varied surface area, dissimilar quantum confinement and hence diverged suitability for different applications. In view of the advantages of TiO2, it can act as an excellent matrix for nanoparticle composite films. These composite films may lead to several advantageous functional optical characteristics. Detailed investigations of these kinds of nanocomposites were also performed, only to find that these nanocomposites showed higher adeptness than their parent material. Fine tuning of these parameters helps researchers to achieve high proficiency in their respective applications. These innumerable opportunities aims to encompass the new progress in studies related to TiO2 for an efficient utilization in photo-catalytic or photo-voltaic applications under visible light, accentuate the future trends of TiO2-research in the environment as well as energy related fields serving promising applications benefitting the mankind. The last section of the thesis discusses the applicability of analysed nanomaterials for dye sensitised solar cells followed by future suggestions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, optical gain measurement setup based on variable stripe length method is designed, implemented and improved. The setup is characterized using inorganic and organic samples. The optical gain of spiro-quaterphenyl is calculated and compared with measurements from the setup. Films with various thicknesses of spiro-quaterphenyl, methoxy-spiro-quaterphenyl and phenoxy-spiro-quaterphenyl are deposited by a vacuum vapor deposition technique forming asymmetric slab waveguides. The optical properties, laser emission threshold, optical gain and loss coefficient for these films are measured. Additionally, the photodegradation during pumping process is investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit 'Liquid Crystalline Hexabenzocoronenes as Organic Molecular Materials - Synthesis, Characterization and Application' war durch drei Schwerpunkte definiert:1. Verbesserung der Synthese von Hexabenzocoronen Derivaten mit sechsfacher Alkyl-Substitution,2. Entwicklung von molekularen Materialien mit verbesserten Eigenschaften wie zum Beispiel Löslichkeit und Verarbeitbarkeit,3. Einsatz der entwickelten Moleküle in optoelektronischen Bauteilen wie zum Beispiel organischen Solarzellen und Feld-Effekt-Transistoren.Mit Hilfe einer neuen Syntheseroute ist es gelungen Aryl-Aryl und Aryl-Alkyl Kupplungen sehr spät in der Reaktionssequenz von Hexabenzocoronenen einzusetzen. Dies führte zu einer Vielzahl substituierter HBC Derivate. Die Einführung eines Phenyl Spacers zwischen den HBC Kern und die äußeren Alkylketten, wie zum Beispiel in HBC-PhC12, hatte eine Vielzahl positiver Effekte wie dramatisch verbesserte Löslichkeit und Flüssigkristallinität bei Raumtemperatur zur Folge. Die Kombination dieser Phänomene ermöglichte die Bildung hochgeordneter Filme, welche sehr wichtig für den Einsatz in organischen Bauelementen sind. Mit Hilfe von STM Techniken an der Fest-Flüssig Phasengrenze wurden hochgeordnete 2-D Strukturen der HBC Moleküle gefunden. Die Kombination von extrem hoher kolumnarer Ordnung, bestimmt mit Hilfe der Festkörper NMR Spektroskopie, mit einer konstant hohen Ladungsträgerbeweglichkeit, führte zu dem sehr erfolgreichen Einsatz von HBC-PhC12 in organischen Solarzellen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the perspective of a new-generation opto-electronic technology based on organic semiconductors, a major objective is to achieve a deep and detailed knowledge of the structure-property relationships, in order to optimize the electronic, optical, and charge transport properties by tuning the chemical-physical characteristics of the compounds. The purpose of this dissertation is to contribute to such understanding, through suitable theoretical and computational studies. Precisely, the structural, electronic, optical, and charge transport characteristics of several promising organic materials recently synthesized are investigated by means of an integrated approach encompassing quantum-chemical calculations, molecular dynamics and kinetic Monte Carlo simulations. Particular care is addressed to the rationalization of optical and charge transport properties in terms of both intra- and intermolecular features. Moreover, a considerable part of this project involves the development of a home-made set of procedures and parts of software code required to assist the modeling of charge transport properties in the framework of the non-adiabatic hopping mechanism applied to organic crystalline materials. As a first part of my investigations, I mainly discuss the optical, electronic, and structural properties of several core-extended rylene derivatives, which can be regarded to as model compounds for graphene nanoribbons. Two families have been studied, consisting in bay-linked perylene bisimide oligomers and N-annulated rylenes. Beside rylene derivatives, my studies also concerned electronic and spectroscopic properties of tetracene diimides, quinoidal oligothiophenes, and oxygen doped picene. As an example of device application, I studied the structural characteristics governing the efficiency of resistive molecular memories based on a derivative of benzoquinone. Finally, as a second part of my investigations, I concentrate on the charge transport properties of perylene bisimides derivatives. Precisely, a comprehensive study of the structural and thermal effects on the charge transport of several core-twisted chlorinated and fluoro-alkylated perylene bisimide n-type semiconductors is presented.