999 resultados para organic arsenic


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Organic matter amendments are applied to contaminated soil to provide a better habitat for re-vegetation and remediation, and olive mill waste compost (OMWC) has been described as a promising material for this aim. We report here the results of an incubation experiment carried out in flooded conditions to study its influence in As and metal solubility in a trace elements contaminated soil. NPK fertilisation and especially organic amendment application resulted in increased As, Se and Cu concentrations in pore water. Independent of the amendment, dimethylarsenic acid (DMA) was the most abundant As species in solution. The application of OMWC increased pore water dissolved organic-carbon (DOC) concentrations, which may explain the observed mobilisation of As, Cu and Se; phosphate added in NPK could also be in part responsible of the mobilisation caused in As. Therefore, the application of soil amendments in mine soils may be particularly problematic in flooded systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prediction of arsenic transport and transformation in soil environment requires understanding the transport mechanisms and proper estimation of arsenic partitioning tong all three phases in soil/aquifer systems: mobile colloids, mobile soil solution, and immobile soil solids. The primary purpose of this research is to study natural dissolved organic matter (DOM)/colloid-facilitated transport of arsenic and understand the role of soil derived carriers in the transport and transformation of both inorganic and organoarsenicals in soils. ^ DOM/colloid facilitated arsenic transport and transformation in porous soil media were investigated using a set of experimental approaches including batch experiment, equilibrium membrane dialysis experiment and column experiment. Soil batch experiment was applied to investigate arsenic adsorption on a variety of soils with different characteristics; Equilibrium membrane dialysis was employed to determine the 'free' and 'colloid-bound/complexed' arsenic in water extracts of chosen soils; Column experiments were also set up in the laboratory to simulate arsenic transport and transformation through golf course soils in the presence and absence of soil-derived dissolved substances. ^ The experimental results revealed that organic matter amendments effectively reduced soil arsenic adsorption. The majority of arsenic present in the soil extracts was associated with small substances of molecular weight (MW) between 500 and 3,500 Da, Only a small fraction of arsenic was associated with higher MW substances (MW > 3,500 Da), which was operationally defined as colloidal part in this study. The association of arsenic and DOM in the soil extracts strongly affected arsenic bioavailability, arsenic transport and transformation in soils. The results of column experiments revealed arsenic complicated behavior with various processes occurring in soils studied, including: soil arsenic' adsorption, facilitated arsenic transportation by dissolved substances presented in soil extracts and microorganisms involved arsenic species transformation. ^ Soil organic matter amendments effectively reduce soil arsenic adsorption capability either by scavenging 'soil arsenic adsorption sites or by interactions between arsenic species and dissolved organic chemicals in soil solution. Close attention must be paid for facilitated arsenic transport by dissolved substances presented in soil solution and microorganisms involved arsenic species transformation in arsenic-contaminated soils.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A single-step magnetic separation procedure that can remove both organic pollutants and arsenic from contaminated water is clearly a desirable goal. Here we show that water dispersible magnetite nanoparticles prepared by anchoring carboxymethyl-beta-cyclodextrin (CMCD) cavities to the surface of magnetic nanoparticles are suitable host carriers for such a process. Monodisperse, 10 nm, spherical magnetite, Fe3O4, nanocrystals were prepared by the thermal decomposition of FeOOH. Trace amounts of antiferromagnet, FeO, present in the particles provides an exchange bias field that results in a high superparamagnetic blocking temperature and appreciable magnetization values that facilitate easy separation of the nanocrystals from aqueous dispersions on application of modest magnetic fields. We show here that small molecules like naphthalene and naphthol can be removed from aqueous media by forming inclusion complexes with the anchored cavities of the CMCD-Fe3O4 nanocrystals followed by separation of the nanocrystals by application of a magnetic field. The adsorption properties of the iron oxide surface towards As ions are unaffected by the CMCD capping so it too can be simultaneously removed in the separation process. The CMCD-Fe3O4 nanocrystals provide a versatile platform for magnetic separation with potential applications in water remediation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel organic-inorganic hybrid compound [Cu(phen)](2)[(VV4As2O19)-V-IV-As-V-O-V].0.5H(2)O 1 has been hydrothermally synthesized. Its structure, determined by single crystal X-ray diffraction, exhibits an unusual two-dimensional arsenic vanadate layered network grafted with the [Cu(phen)](2+) complex. The chelating phen ligands project perpendicularly beyond the inorganic layer. Variable temperature magnetic susceptibility studies indicate that both ferro- and antiferro-magnetic interactions exist in 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we determined the concentrations of antimony species (antimonite (Sb(III)), antimonate (Sb(V)) and dissolved inorganic antimony (DISb)) and arsenic, in Bohai Bay seawaters, as well as the relationships of the analytes with environmental factors such as seawater characteristics (e.g., suspended particulate material (SPM), salinity and total organic carbon (TOC)), heavy metals, nutrients and phytoplankton species, and evaluated the sources of arsenic and antimony. Dissolved arsenic and antimony concentrations in the surface waters were ranging spatially from 1.03 to 1.26 ng/ml and 0.386 to 1.075 ng/ml, with mean values of 1.18 and 0.562 ng/ml, respectively. Sb(V) as the prominent chemical species constituted about 89%. Regarding arsenic concentrations in the surface waters, there was a tendency for a small variation. However, antimony species concentrations were much variable than arsenic. The highest arsenic and antimony concentrations were found near the Haihe Estuary. These distribution patterns were controlled mainly by environmental factors, biological activities and sources. In this region, DISb and Sb(V) negatively correlated with salinity. Besides, arsenic and antimony correlated well with the nutrients, chlorophyll a and phytoplankton, implying that arsenic and antimony had been involved in biological cycling. In addition, according to our estimate, about 333.5 x 10(8) mg/year of arsenic and 454.2 x 10(8) mg/year of antimony reached Bohai Bay via rivers. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biogeochemistry of arsenic (As) in sediments is regulated by multiple factors such as particle size, dissolved organic matter (DOM), iron mobilization, and sediment binding characteristics, among others. Understanding the heterogeneity of factors affecting As deposition and the kinetics of mobilization, both horizontally and vertically, across sediment depositional environments was investigated in Sundarban mangrove ecosystems, Bengal Delta, Bangladesh. Sediment cores were collected from 3 different Sundarbans locations and As concentration down the profiles were found to be more associated with elevated Fe and Mn than with organic matter (OM). At one site chosen for field monitoring, sediment cores, pore and surface water, and in situ diffusive gradients in thin films (DGT) measurements (which were used to model As sediment pore-water concentrations and resupply from the solid phase) were sampled from four different subhabitats. Coarse-textured riverbank sediment porewaters were high in As, but with a limited resupply of As from the solid phase compared to fine-textured and high organic matter content forest floor sediments, where porewater As was low, but with much higher As resupply. Depositional environment (overbank verses forest floor) and biological activity (input of OM from forest biomass) considerably affected As dynamics over very short spatial distances in the mosaic of microhabitats that constitute a mangrove ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated.

Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined.

Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains.

These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a +/- stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synchrotron-based X-ray fluorescence (S-XRF) was utilized to locate arsenic (As) in polished (white) and unpolished (brown) rice grains from the United States, China, and Bangladesh. In white rice As was generally dispersed throughout the grain, the bulk of which constitutes the endosperm. In brown rice As was found to be preferentially localized at the surface, in the region corresponding to the pericarp and aleurone layer. Copper, iron, manganese, and zinc localization followed that of arsenic in brown rice, while the location for cadmium and nickel was distinctly different, showing relatively even distribution throughout the endosperm. The localization of As in the outer grain of brown rice was confirmed by laser ablation ICP-MS. Arsenic speciation of all grains using spatially resolved X-ray absorption near edge structure (micro-XANES) and bulk extraction followed by anion exchange HPLC-ICP-MS revealed the presence of mainly inorganic As and dimethylarsinic acid (DMA). However, the two techniques indicated different proportions of inorganic:organic As species. A wider survey of whole grain speciation of white (n=39) and brown (n=45) rice samples from numerous sources (field collected, supermarket survey, and pot trials) showed that brown rice had a higher proportion of inorganic arsenic present than white rice. Furthermore, the percentage of DMA present in the grain increased along with total grain arsenic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High levels of As in groundwater commonly found in Bangladesh and other parts of Asia not only pose a risk via drinking water consumption but also a risk in agricultural sustainability and food safety. This review attempts to provide an overview of current knowledge and gaps related to the assessment and management of these risks, including the behaviour of As in the soil-plant system, uptake, phytotoxicity, As speciation in foods, dietary habits, and human health risks. Special emphasis has been given to the situation in Bangladesh, where groundwater via shallow tube wells is the most important source of irrigation water in the dry season. Within the soil-plant system, there is a distinct difference in behaviour of As under flooded conditions, where arsenite (AsIII) predominates, and under nonflooded conditions, where arsenate (AsV) predominates. The former is regarded as most toxic to humans and plants. Limited data indicate that As-contaminated irrigation water can result in a slow buildup of As in the topsoil. In some cases the buildup is reflected by the As levels in crops, in others not. It is not yet possible to predict As uptake and toxicity in plants based on soil parameters. It is unknown under what conditions and in what time frame As is building up in the soil. Representative phytotoxicity data necessary to evaluate current and future soil concentrations are not yet available. Although there are no indications that crop production is currently inhibited by As, long-term risks are clearly present. Therefore, with concurrent assessments of the risks, management options to further prevent As accumulation in the topsoil should already have been explored. With regard to human health, data on As speciation in foods in combination with food consumption data are needed to assess dietary exposure, and these data should include spatial and seasonal variability. It is important to control confounding factors in assessing the risks. In a country where malnutrition is prevalent, levels of inorganic As in foods should be balanced against the nutritional value of the foods. Regarding agriculture, As is only one of the many factors that may pose a risk to the sustainability of crop production. Other risk factors such as nutrient depletion and loss of organic matter also must be taken into account to set priorities in terms of research, management, and overall strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a method to extract and separate phytochelatins (PCs)-metal(loid) complexes using parallel metal(loid)-specific (inductively coupled plasma-mass spectrometry) and organic-specific (electrospray ionization-mass spectrometry) detection systems-and use it here to ascertain the nature of arsenic (As)-PC complexes in plant extracts. This study is the first unequivocal report, to our knowledge, of PC complex coordination chemistry in plant extracts for any metal or metalloid ion. The As-tolerant grass Holcus lanatus and the As hyperaccumulator Pteris cretica were used as model plants. In an in vitro experiment using a mixture of reduced glutathione (GS), PC(2), and PC(3), As preferred the formation of the arsenite [As((III))]-PC(3) complex over GS-As((III))-PC(2), As((III))-(GS)(3), As((III))-PC(2), or As((III))-(PC(2))(2) (GS: glutathione bound to arsenic via sulphur of cysteine). In H. lanatus, the As((III))-PC(3) complex was the dominant complex, although reduced glutathione, PC(2), and PC(3) were found in the extract. P. cretica only synthesizes PC(2) and forms dominantly the GS-As((III))-PC(2) complex. This is the first evidence, to our knowledge, for the existence of mixed glutathione-PC-metal(loid) complexes in plant tissues or in vitro. In both plant species, As is dominantly in non-bound inorganic forms, with 13% being present in PC complexes for H. lanatus and 1% in P. cretica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have demonstrated that rice cultivated under flooded conditions has higher concentrations of arsenic (As) but lower cadmium (Cd) compared to rice grown in unsaturated soils. To validate such effects over long terms under Mediterranean conditions a field experiment, conducted over 7 successive years was established in SW Spain. The impact of water management on rice production and grain arsenic (As) and cadmium (Cd) was measured, and As speciation was determined to inform toxicity evaluation. Sprinkler irrigation was compared to traditional flooding.

Both irrigation techniques resulted in similar grain yields (similar to 3000 kg grain ha(-1)). Successive sprinkler irrigation over 7 years decreased grain total As to one-sixth its initial concentration in the flooded system (0.55 to 0.09 mg As kg(-1)), while one cycle of sprinkler irrigation also reduced grain total As by one-third (0.20 mg kg(-1)). Grain inorganic As concentration increased up to 2 folds under flooded conditions compared to sprinkler irrigated fields while organic As was also lower in sprinkler system treatments, but to a lesser extent. This suggests that methylation is favored under water logging. However, sprinkler irrigation increased Cd transfer to grain by a factor of 10, reaching 0.05 mg Cd kg(-1) in 7 years. Sprinlder systems in paddy fields seem particularly suited for Mediterranean climates and are able to mitigate against excessive As accumulation, but our evidence shows that an increased Cd load in rice grain may result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rice is a major source of inorganic arsenic (iAs) in the human diet because paddy rice. efficient at accumulating As Rice As speciation is dominated by iAs and dimethylarsinic acid (DMA). Here we review the global pattern in rice As speciation and the factors causing the variation. Rice produced in Asia shows a strong linear relationship between iAs and total As concentration with a slope of 0.78. Rice produced in Europe and the United States shows a more variable, but generally hyperbolic relationship with DMA being predominant in U.S. rice. Although there is significant genotypic variation in grain As speciation, the regional Variations are primarily attributed to environmental factors. Emerging evidence also indicates that methylated. As species in rice are derived from the soil, while rice plants lack the As methylation ability. Soil flooding and additions of organic matter increase microbial methylation of As, although the microbial community responsible for methylafion is poorly understood. Compared with iAs, methylated As species are taken up by rice roots less efficiently but are transported to the grain much, more efficiently, which may be an important factor responsible for the spikelet sterility disorder (straight head disease) in rice. DMA is a weak carcinogen, but the level of ingestion from rice consumption is much lower than that of concern. Questions that require further investigations are identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogeochemical relationships and the level of arsenic (As) contamination of groundwater in the Haor Basin, a low-lying, semi-natural, region of remnant wetland environs to the northeast of Bangladesh, were studied to assess the As biogeochemical cycling. Most of the shallow and deep tubewells in the study area are contaminated with As (2-331 mu g/l). The relatively higher proportions of Na+ (8-156 mg/l) in groundwater suggest a mixing of connate marine water with freshwater aquifer. Non-significant association between As and PO43- has been found. Highly significant (P <0.001) relationship of As with DOC in groundwater indicates biodegradation of organic matter, creating an overall reducing environment in the aquifer sediments, which facilitates the release of As in the groundwater. The inverse As-Fe, As-Mn, As-Ca and As-Mg relationships in groundwater could be related to the precipitation of Fe-, Mn-, Ca-and Mg-minerals.