957 resultados para on-ramp queue estimation
Resumo:
A queue manager (QM) is a core traffic management (TM) function used to provide per-flow queuing in access andmetro networks; however current designs have limited scalability. An on-demand QM (OD-QM) which is part of a new modular field-programmable gate-array (FPGA)-based TM is presented that dynamically maps active flows to the available physical resources; its scalability is derived from exploiting the observation that there are only a few hundred active flows in a high speed network. Simulations with real traffic show that it is a scalable, cost-effective approach that enhances per-flow queuing performance, thereby allowing per-flow QM without the need for extra external memory at speeds up to 10 Gbps. It utilizes 2.3%–16.3% of a Xilinx XC5VSX50t FPGA and works at 111 MHz.
Resumo:
Estimating snow mass at continental scales is difficult but important for understanding landatmosphere interactions, biogeochemical cycles and Northern latitudes’ hydrology. Remote sensing provides the only consistent global observations, but the uncertainty in measurements is poorly understood. Existing techniques for the remote sensing of snow mass are based on the Chang algorithm, which relates the absorption of Earth-emitted microwave radiation by a snow layer to the snow mass within the layer. The absorption also depends on other factors such as the snow grain size and density, which are assumed and fixed within the algorithm. We examine the assumptions, compare them to field measurements made at the NASA Cold Land Processes Experiment (CLPX) Colorado field site in 2002–3, and evaluate the consequences of deviation and variability for snow mass retrieval. The accuracy of the emission model used to devise the algorithm also has an impact on its accuracy, so we test this with the CLPX measurements of snow properties against SSM/I and AMSR-E satellite measurements.
Resumo:
This paper discusses how numerical gradient estimation methods may be used in order to reduce the computational demands on a class of multidimensional clustering algorithms. The study is motivated by the recognition that several current point-density based cluster identification algorithms could benefit from a reduction of computational demand if approximate a-priori estimates of the cluster centres present in a given data set could be supplied as starting conditions for these algorithms. In this particular presentation, the algorithm shown to benefit from the technique is the Mean-Tracking (M-T) cluster algorithm, but the results obtained from the gradient estimation approach may also be applied to other clustering algorithms and their related disciplines.
Resumo:
Despite the fact that mites were used at the dawn of forensic entomology to elucidate the postmortem interval, their use in current cases remains quite low for procedural reasons such as inadequate taxonomic knowledge. A special interest is focused on the phoretic stages of some mite species, because the phoront-host specificity allows us to deduce in many occasions the presence of the carrier (usually Diptera or Coleoptera) although it has not been seen in the sampling performed in situ or in the autopsy room. In this article, we describe two cases where Poecilochirus austroasiaticus Vitzthum (Acari: Parasitidae) was sampled in the autopsy room. In the first case, we could sample the host, Thanatophilus ruficornis (Küster) (Coleoptera: Silphidae), which was still carrying phoretic stages of the mite on the body. That attachment allowed, by observing starvation/feeding periods as a function of the digestive tract filling, the establishment of chronological cycles of phoretic behavior, showing maximum peaks of phoronts during arrival and departure from the corpse and the lowest values in the phase of host feeding. From the sarcosaprophagous fauna, we were able to determine in this case a minimum postmortem interval of 10 days. In the second case, we found no Silphidae at the place where the corpse was found or at the autopsy, but a postmortem interval of 13 days could be established by the high specificity of this interspecific relationship and the departure from the corpse of this family of Coleoptera.
Resumo:
Data available on continuos-time diffusions are always sampled discretely in time. In most cases, the likelihood function of the observations is not directly computable. This survey covers a sample of the statistical methods that have been developed to solve this problem. We concentrate on some recent contributions to the literature based on three di§erent approaches to the problem: an improvement of the Euler-Maruyama discretization scheme, the use of Martingale Estimating Functions and the application of Generalized Method of Moments (GMM).
Resumo:
Data available on continuous-time diffusions are always sampled discretely in time. In most cases, the likelihood function of the observations is not directly computable. This survey covers a sample of the statistical methods that have been developed to solve this problem. We concentrate on some recent contributions to the literature based on three di§erent approaches to the problem: an improvement of the Euler-Maruyama discretization scheme, the employment of Martingale Estimating Functions, and the application of Generalized Method of Moments (GMM).
Resumo:
This paper proposes unit tests based on partially adaptive estimation. The proposed tests provide an intermediate class of inference procedures that are more efficient than the traditional OLS-based methods and simpler than unit root tests based on fully adptive estimation using nonparametric methods. The limiting distribution of the proposed test is a combination of standard normal and the traditional Dickey-Fuller (DF) distribution, including the traditional ADF test as a special case when using Gaussian density. Taking into a account the well documented characteristic of heavy-tail behavior in economic and financial data, we consider unit root tests coupled with a class of partially adaptive M-estimators based on the student-t distributions, wich includes te normal distribution as a limiting case. Monte Carlo Experiments indicate that, in the presence of heavy tail distributions or innovations that are contaminated by outliers, the proposed test is more powerful than the traditional ADF test. We apply the proposed test to several macroeconomic time series that have heavy-tailed distributions. The unit root hypothesis is rejected in U.S. real GNP, supporting the literature of transitory shocks in output. However, evidence against unit roots is not found in real exchange rate and nominal interest rate even haevy-tail is taken into a account.
Resumo:
This paper constructs a unit root test baseei on partially adaptive estimation, which is shown to be robust against non-Gaussian innovations. We show that the limiting distribution of the t-statistic is a convex combination of standard normal and DF distribution. Convergence to the DF distribution is obtaineel when the innovations are Gaussian, implying that the traditional ADF test is a special case of the proposed testo Monte Carlo Experiments indicate that, if innovation has heavy tail distribution or are contaminated by outliers, then the proposed test is more powerful than the traditional ADF testo Nominal interest rates (different maturities) are shown to be stationary according to the robust test but not stationary according to the nonrobust ADF testo This result seems to suggest that the failure of rejecting the null of unit root in nominal interest rate may be due to the use of estimation and hypothesis testing procedures that do not consider the absence of Gaussianity in the data.Our results validate practical restrictions on the behavior of the nominal interest rate imposed by CCAPM, optimal monetary policy and option pricing models.
Resumo:
"November 1982."
Resumo:
A novel algorithm for performing registration of dynamic contrast-enhanced (DCE) MRI data of the breast is presented. It is based on an algorithm known as iterated dynamic programming originally devised to solve the stereo matching problem. Using artificially distorted DCE-MRI breast images it is shown that the proposed algorithm is able to correct for movement and distortions over a larger range than is likely to occur during routine clinical examination. In addition, using a clinical DCE-MRI data set with an expertly labeled suspicious region, it is shown that the proposed algorithm significantly reduces the variability of the enhancement curves at the pixel level yielding more pronounced uptake and washout phases.