879 resultados para omega n-3
Resumo:
This paper presents a problem structuring methodology to assess real option decisions in the face of unpredictability. Based on principles of robustness analysis and scenario planning, we demonstrate how decision-aiding can facilitate participation in projects setting and achieve effective decision making through the use of real options reasoning. We argue that robustness heuristics developed in earlier studies can be practical proxies for real options performance, hence indicators of efficient flexible planning. The developed framework also highlights how to integrate real options solutions in firms’ strategic plans and operating actions. The use of the methodology in a location decision application is provided for illustration.
Resumo:
Ocean acidification will likely have negative impacts on invertebrates producing skeletons composed of calcium carbonate. Skeletal solubility is partly controlled by the incorporation of "foreign" ions (e.g. magnesium) into the crystal lattice of these skeletal structures, a process that is sensitive to a variety of biological and environmental factors. Here we explore effects of life stage, oceanographic region of origin, and changes in the partial pressure of carbon dioxide in seawater (pCO2) on trace elemental composition in the purple sea urchin (Strongylocentrotus purpuratus). We show that, similar to other urchin taxa, adult purple sea urchins have the ability to precipitate skeleton composed of a range of biominerals spanning low- to high-Mg calcites. Mg / Ca and Sr / Ca ratios were substantially lower in adult spines compared to adult tests. On the other hand, trace elemental composition was invariant among adults collected from four oceanographically distinct regions spanning a range of carbonate chemistry conditions (Oregon, Northern California, Central California, and Southern California). Skeletons of newly settled juvenile urchins that originated from adults from the four regions exhibited intermediate Mg / Ca and Sr / Ca between adult spine and test endmembers, indicating that skeleton precipitated during early life stages is more soluble than adult spines and less soluble than adult tests. Mean skeletal Mg / Ca or Sr / Ca of juvenile skeleton did not vary with source region when larvae were reared under present-day, global-average seawater carbonate conditions (400 µatm; pHT = 8.02 ± 0.03 1 SD; Omega calcite = 3.3 ± 0.2 1 SD). However, when reared under elevated pCO2 (900 µatm; pHT = 7.73 ± 0.03; Omega calcite = 1.8 ± 0.1), skeletal Sr / Ca in juveniles exhibited increased variance across the four regions. Although larvae from the northern populations (Oregon, Northern California, Central California) did not exhibit differences in Mg or Sr incorporation under elevated pCO2 (Sr / Ca = 2.10 ± 0.06 mmol/mol; Mg / Ca = 67.4 ± 3.9 mmol/mol), juveniles of Southern California origin partitioned ~8% more Sr into their skeletons when exposed to higher pCO2 (Sr / Ca = 2.26 ± 0.08 vs. 2.09 ± 0.005 mmol/mol 1 SD). Together these results suggest that the diversity of carbonate minerologies present across different skeletal structures and life stages in purple sea urchins does not translate into an equivalent geochemical plasticity of response associated with geographic variation or temporal shifts in seawater properties. Rather, composition of S. purpuratus skeleton precipitated during both early and adult life history stages appears relatively robust to spatial gradients and predicted future changes in carbonate chemistry. An exception to this trend may arise during early life stages, where certain populations of purple sea urchins may alter skeletal mineral precipitation rates and composition beyond a given pCO2 threshold. This potential for geochemical plasticity during early development in contrast to adult stage geochemical resilience adds to the growing body of evidence that ocean acidification can have differing effects across organismal life stages.
Resumo:
After more than 25 years of published investigation, including randomized controlled trials, the role of omega-3 polyunsaturated fatty acids in the treatment of kidney disease remains unclear. In vitro and in vivo experimental studies support the efficacy of omega-3 polyunsaturated fatty acids on inflammatory pathways involved with the progression of kidney disease. Clinical investigations have focused predominantly on immunoglobulin A (IgA) nephropathy. More recently, lupus nephritis, polycystic kidney disease, and other glomerular diseases have been investigated. Clinical trials have shown conflicting results for the efficacy of omega-3 polyunsaturated fatty acids in IgA nephropathy, which may relate to varying doses, proportions of eicosapentaenoic acid and docosahexaenoic acid, duration of therapy, and sample size of the study populations. Meta-analyses of clinical trials using omega-3 polyunsaturated fatty acids in IgA nephropathy have been limited by the quality of available studies. However, guidelines suggest that omega-3 polyunsaturated fatty acids should be considered in progressive IgA nephropathy. Omega-3 polyunsaturated fatty acids decrease blood pressure, a known accelerant of kidney disease progression. Well-designed, adequately powered, randomized, controlled clinical trials are required to further investigate the potential benefits of omega-3 polyunsaturated fatty acids on the progression of kidney disease and patient survival.
Resumo:
Alterations in cognitive function are characteristic of the aging process in humans and other animals. However, the nature of these age related changes in cognition is complex and is likely to be influenced by interactions between genetic predispositions and environmental factors resulting in dynamic fluctuations within and between individuals. These inter and intra-individual fluctuations are evident in both so-called normal cognitive aging and at the onset of cognitive pathology. Mild Cognitive Impairment (MCI), thought to be a prodromal phase of dementia, represents perhaps the final opportunity to mitigate cognitive declines that may lead to terminal conditions such as dementia. The prognosis for people with MCI is mixed with the evidence suggesting that many will remain stable within 10-years of diagnosis, many will improve, and many will transition to dementia. If the characteristics of people who do not progress to dementia from MCI can be identified and replicated in others it may be possible to reduce or delay dementia onset, thus reducing a growing personal and public health burden. Furthermore, if MCI onset can be prevented or delayed, the burden of cognitive decline in aging populations worldwide may be reduced. A cognitive domain that is sensitive to the effects of advancing age, and declines in which have been shown to presage the onset of dementia in MCI patients, is executive function. Moreover, environmental factors such as diet and physical activity have been shown to affect performance on tests of executive function. For example, improvements in executive function have been demonstrated as a result of increased aerobic and anaerobic physical activity and, although the evidence is not as strong, findings from dietary interventions suggest certain nutrients may preserve or improve executive functions in old age. These encouraging findings have been demonstrated in older adults with MCI and their non-impaired peers. However, there are some gaps in the literature that need to be addressed. For example, little is known about the effect on cognition of an interaction between diet and physical activity. Both are important contributors to health and wellbeing, and a growing body of evidence attests to their importance in mental and cognitive health in aging individuals. Yet physical activity and diet are rarely considered together in the context of cognitive function. There is also little known about potential underlying biological mechanisms that might explain the physical activity/diet/cognition relationship. The first aim of this program of research was to examine the individual and interactive role of physical activity and diet, specifically long chain polyunsaturated fatty acid consumption(LCn3) as predictors of MCI status. The second aim is to examine executive function in MCI in the context of the individual and interactive effects of physical activity and LCn3.. A third aim was to explore the role of immune and endocrine system biomarkers as possible mediators in the relationship between LCn3, physical activity and cognition. Study 1a was a cross-sectional analysis of MCI status as a function of erythrocyte proportions of an interaction between physical activity and LCn3. The marine based LCn3s eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have both received support in the literature as having cognitive benefits, although comparisons of the relative benefits of EPA or DHA, particularly in relation to the aetiology of MCI, are rare. Furthermore, a limited amount of research has examined the cognitive benefits of physical activity in terms of MCI onset. No studies have examined the potential interactive benefits of physical activity and either EPA or DHA. Eighty-four male and female adults aged 65 to 87 years, 50 with MCI and 34 without, participated in Study 1a. A logistic binary regression was conducted with MCI status as a dependent variable, and the individual and interactive relationships between physical activity and either EPA or DHA as predictors. Physical activity was measured using a questionnaire and specific physical activity categories were weighted according to the metabolic equivalents (METs) of each activity to create a physical activity intensity index (PAI). A significant relationship was identified between MCI outcome and the interaction between the PAI and EPA; participants with a higher PAI and higher erythrocyte proportions of EPA were more likely to be classified as non-MCI than their less active peers with less EPA. Study 1b was a randomised control trial using the participants from Study 1a who were identified with MCI. Given the importance of executive function as a determinant of progression to more severe forms of cognitive impairment and dementia, Study 1b aimed to examine the individual and interactive effect of physical activity and supplementation with either EPA or DHA on executive function in a sample of older adults with MCI. Fifty male and female participants were randomly allocated to supplementation groups to receive 6-months of supplementation with EPA, or DHA, or linoleic acid (LA), a long chain polyunsaturated omega-6 fatty acid not known for its cognitive enhancing properties. Physical activity was measured using the PAI from Study 1a at baseline and follow-up. Executive function was measured using five tests thought to measure different executive function domains. Erythrocyte proportions of EPA and DHA were higher at follow-up; however, PAI was not significantly different. There was also a significant improvement in three of the five executive function tests at follow-up. However, regression analyses revealed that none of the variance in executive function at follow-up was predicted by EPA, DHA, PAI, the EPA by PAI interaction, or the DHA by PAI interaction. The absence of an effect may be due to a small sample resulting in limited power to find an effect, the lack of change in physical activity over time in terms of volume and/or intensity, or a combination of both reduced power and no change in physical activity. Study 2a was a cross-sectional study using cognitively unimpaired older adults to examine the individual and interactive effects of LCn3 and PAI on executive function. Several possible explanations for the absence of an effect were identified. From this consideration of alternative explanations it was hypothesised that post-onset interventions with LCn3 either alone or in interation with self-reported physical activity may not be beneficial in MCI. Thus executive function responses to the individual and interactive effects of physical activity and LCn3 were examined in a sample of older male and female adults without cognitive impairment (n = 50). A further aim of study 2a was to operationalise executive function using principal components analysis (PCA) of several executive function tests. This approach was used firstly as a data reduction technique to overcome the task impurity problem, and secondly to examine the executive function structure of the sample for evidence of de-differentiation. Two executive function components were identified as a result of the PCA (EF 1 and EF 2). However, EPA, DHA, the PAI, or the EPA by PAI or DHA by PAI interactions did not account for any variance in the executive function components in subsequent hierarchical multiple regressions. Study 2b was an exploratory correlational study designed to explore the possibility that immune and endocrine system biomarkers may act as mediators of the relationship between LCn3, PAI, the interaction between LCn3 and PAI, and executive functions. Insulin-like growth factor-1 (IGF-1), an endocrine system growth hormone, and interleukin-6 (IL-6) an immune system cytokine involved in the acute inflammatory response, have both been shown to affect cognition including executive functions. Moreover, IGF-1 and IL-6 have been shown to be antithetical in so far as chronically increased IL-6 has been associated with reduced IGF-1 levels, a relationship that has been linked to age related morbidity. Further, physical activity and LCn3 have been shown to modulate levels of both IGF-1 and IL-6. Thus, it is possible that the cognitive enhancing effects of LCn3, physical activity or their interaction are mediated by changes in the balance between IL-6 and IGF-1. Partial and non-parametric correlations were conducted in a subsample of participants from Study 2a (n = 13) to explore these relationships. Correlations of interest did not reach significance; however, the coefficients were quite large for several relationships suggesting studies with larger samples may be warranted. In summary, the current program of research found some evidence supporting an interaction between EPA, not DHA, and higher energy expenditure via physical activity in differentiating between older adults with and without MCI. However, a RCT examining executive function in older adults with MCI found no support for increasing EPA or DHA while maintaining current levels of energy expenditure. Furthermore, a cross-sectional study examining executive function in older adults without MCI found no support for better executive function performance as a function of increased EPA or DHA consumption, greater energy expenditure via physical activity or an interaction between physical activity and either EPA or DHA. Finally, an examination of endocrine and immune system biomarkers revealed promising relationships in terms of executive function in non-MCI older adults particularly with respect to LCn3 and physical activity. Taken together, these findings demonstrate a potential benefit of increasing physical activity and LCn3 consumption, particularly EPA, in mitigating the risk of developing MCI. In contrast, no support was found for a benefit to executive function as a result of increased physical activity, LCn3 consumption or an interaction between physical activity and LCn3, in participants with and without MCI. These results are discussed with reference to previous findings in the literature including possible limitations and opportunities for future research.
Resumo:
In August of 2010, Anna Salleh of the Science Unit of the Australian Broadcasting Corporation broke a story about Monsanto seeking to patent the enhancement of meat, including omega-3 fatty acids: ‘Enhanced port is sparking debate over the ethics of placing patents on food. Patent applications covering the enhancement of meat, including pork with omega-3 fatty acids, are stimulating debate over the ethics and legalities of claiming intellectual property over food. Monsanto has filed patents that cover the feeding of animals soybeans, which have been genetically modified by the company to contain stearidonic acid (SDA), a plant-derived omega-3 fatty acid... Omega-3s have been linked to improved cardiovascular health and there are many companies engineering them into foodstuffs. But the new patent applications have touched a raw nerve among those who see them as an attempt by the company to exert control over the food chain.’ This article providers a critical evaluation of the controversy of Monsanto’s patent applications, and the larger issues over patenting food. It first considers the patent portfolio of Monsanto; the nature of the patent claims; and the examination of the claims by patent examiners. Second, it examines the withdrawal and revision of the patent claims by Monsanto in the wake of criticism by patent authorities and the public disquiet over the controversial application. Third, this article considers the larger policy issues raised by Monsanto’s patent applications – including the patenting of plants, animals, and foodstuffs. There is also a consideration of the impact of patents upon the administration of health-care, competition, and research.
Resumo:
Recent research has identified marine molluscs as an excellent source of omega-3 long-chain polyunsaturated fatty acids (lcPUFAs), based on their potential for endogenous synthesis of lcPUFAs. In this study we generated a representative list of fatty acyl desaturase (Fad) and elongation of very long-chain fatty acid (Elovl) genes from major orders of Phylum Mollusca, through the interrogation of transcriptome and genome sequences, and various publicly available databases. We have identified novel and uncharacterised Fad and Elovl sequences in the following species: Anadara trapezia, Nerita albicilla, Nerita melanotragus, Crassostrea gigas, Lottia gigantea, Aplysia californica, Loligo pealeii and Chlamys farreri. Based on alignments of translated protein sequences of Fad and Elovl genes, the haeme binding motif and histidine boxes of Fad proteins, and the histidine box and seventeen important amino acids in Elovl proteins, were highly conserved. Phylogenetic analysis of aligned reference sequences was used to reconstruct the evolutionary relationships for Fad and Elovl genes separately. Multiple, well resolved clades for both the Fad and Elovl sequences were observed, suggesting that repeated rounds of gene duplication best explain the distribution of Fad and Elovl proteins across the major orders of molluscs. For Elovl sequences, one clade contained the functionally characterised Elovl5 proteins, while another clade contained proteins hypothesised to have Elovl4 function. Additional well resolved clades consisted only of uncharacterised Elovl sequences. One clade from the Fad phylogeny contained only uncharacterised proteins, while the other clade contained functionally characterised delta-5 desaturase proteins. The discovery of an uncharacterised Fad clade is particularly interesting as these divergent proteins may have novel functions. Overall, this paper presents a number of novel Fad and Elovl genes suggesting that many mollusc groups possess most of the required enzymes for the synthesis of lcPUFAs.
Resumo:
The effects of inserting unsubstituted omega-amino acids into the strand segments of model beta-hairpin peptides was investigated by using four synthetic decapeptides, Boc-Lcu-Val-Xxx-Val-D-Pro-Gly-Leu-Xxx-Val-Val- OMe: pepticle 1 (Xxx=Gly), pepticle 2 (Xxx=beta Gly=beta hGly=homoglycine, beta-glycine), pepticle 3 (Xxx=gamma Abu=gamma-aminobutyric acid), pepticle 4 (Xxx= delta Ava=delta-aminovaleric acid). H-1 NMR studies (500 MHz, methanol) reveal several critical cross-strand NOEs, providing evidence for P-hairpin conformations in peptides 2-4. In peptide 3, the NMR results support the formation of the nucleating turn, however, evidence for cross-strand registry is not detected. Single-crystal X-ray diffraction studies of peptide 3 reveal a beta-hairpin conformation for both molecules in the crystallographic asymmetric unit, stabilized by four cross-strand hydrogen bonds, with the gamma Abu residues accommodated within the strands. The D-Pro-Gly segment in both molecules (A,B) adopts a type II' beta-turn conformation. The circular dichroism spectrum for peptide 3 is characterized by a negative CD band at 229 rim, whereas for peptides 2 and 4, the negative band is centered at 225 nm, suggesting a correlation between the orientation of the amide units in the strand segments and the observed CD pattern.
Resumo:
Nivelrikko on koirilla yleinen sairaus. Sen hoitoon yleisesti käytettävien tulehduskipulääkkeiden rinnalle etsitään hoitomuotoja tulehduskipulääkkeiden pitkäaikaiskäytöstä johtuvien haittavaikutusten takia. Tutkimuksemme tavoite oli selvittää omega-3-rasvahappojen käytön hyötyä nivelrikkoisten koirien hoidossa. Tutkimuksen alkuhetkellä tutkimusta vastaavasta aiheesta koirilla ei ollut tehty. Ihmisillä reumatoidin artriitin hoidossa omega-3-rasvahapoilla on todettu olevan positiivisia vaikutuksia, joten siihen viitaten myös nivelrikkoisilla koirilla saattaisi olla hyötyä omega-3-rasvahappojen käytöstä. Omega-3-rasvahapoilla on todettu olevan positiivisia vaikutuksia useisiin tulehduksellisiin sairauksiin. Tutkimushypoteesimme oli, että kalaöljyä syövän ryhmän kohtisuora maksimaalinen voima askelvoimalevyllä kasvaisi ja ryhmän arvioitu kivuliaisuus laskisi tutkimuksen aikana. Tutkimamme tuote oli omega-3-rasvahapporavintolisä (Doils® Nivelet, Nutraceuticoils, Belgia). Tutkimus oli satunnaistettu, kaksoissokkoutettu ja kontrolloitu kliininen tutkimus. Tutkimukseen haettiin koiria ilmoitusten perusteella. Alkukyselyn ja seulontakäynnin perusteella tutkimuksen aloitti 77 koiraa. Seulontakäynnillä koirille tehtiin kliininen yleistutkimus, ortopedinen tutkimus, suppea neurologinen tutkimus, röntgenkuvaus, askelvoimalevymittaus sekä verinäytteenotto. Koirat kävivät varsinaisen tutkimuksen aikana kahdella lähikäynnillä. Molemmilla kerroilla koirille suoritettiin röntgenkuvausta lukuun ottamatta samat toimenpiteet kuin seulontakäynnillä. Tutkimuksen aikana omistajat täyttivät kyselykaavakkeita yhteensä seitsemän kertaa. Tutkimuksessa arvioitiin nivelrikkoisten koirien kipua sekä omistajan että eläinlääkärin arvioiden avulla sekä askelvoimalevyn avulla. Arviointimenetelmistä saatuja tuloksia olivat omistajan täyttämästä kyselykaavakkeesta kipuindeksin kyselyn tulokset, liikkumisvaikeuksista kertova VAS, elämänlaadusta kertova VAS, varakipulääkkeiden käyttö, vertailevat kysymykset, omistajan arvio valmisteen tehosta ja koiran ryhmästä, eläinlääkärin arvio sekä askelvoimalevyltä saadut kaksi muuttujaa (kohtisuora maksimaalinen voima ja impulssi). Tutkimustuloksissa havaittiin omega-3-rasvahappojen käytössä nivelrikkoisten koirien hoidossa pieni hyöty. Kalaöljyryhmän ja lumeryhmän välillä ei havaittu tilastollisesti merkitsevää eroa. Ryhmien sisällä havaittiin muutamia tilastollisesti merkitseviä muutoksia. Kipuindeksin muutos paremmaksi kalaöljyryhmässä tutkimuksen aikana oli vahvasti tilastollisesti merkitsevä muutos (p=0,002). Myös askelvoimalevyn kohtisuoran maksimaalisen voiman parantuminen oli vahvasti tilastollisesti merkitsevä muutos kalaöljyä syöneessä ryhmässä(p=0,001). Myös lumeryhmässä oli kipuindeksissä ja askelvoimalevyn kohtisuorassa maksimaalisessa voimassa havaittavissa tilastollisesti merkitsevä trendi (p=0,07 & p=0,059), mutta p-arvot eivät yltäneet tilastolliseen merkitsevyyteen. Suuremmalla otoskoolla näissä muuttujissa olisi voitu havaita joko tilastollisesti merkitseviä eroja ryhmien välillä tai sitten olisimme voineet osoittaa molemmissa ryhmissä tapahtuneen positiivisia eli parantavia muutoksia. Tutkimuksessa ei havaittu sivuvaikutuksia kalaöljyryhmässä. Tutkimustulokset todistivat tutkimushypoteesimme heikosti todeksi. Omega-3-rasvahappoja voisi siis hyvin käyttää koirilla, joille ei sovi kipulääkkeet.
Resumo:
The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1) on a 16:8h light:dark cycle, in natural seawater and F/2 nutrients was 24.8% EPA and 10.3% DHA. Transgenic strain grown in RP produced the highest levels of EPA (12.8%) incorporated in neutral lipids. However, the highest partitioning of DHA in neutral lipids was observed in cultures grown in PBR (7.1%). Our results clearly demonstrate the potential for the development of the transgenic Pt_Elo5 as a platform for the commercial production of EPA and DHA.
Resumo:
OBJECTIVE: To determine the effect of dietary supplementation with omega-3 fish oils with or without copper on disease activity in systemic lupus erythematosus (SLE). Fish oil supplementation has a beneficial effect on murine models of SLE, while exogenous copper can decrease the formation of lupus erythematosus cells in rats with a hydralazine-induced collagen disease. METHODS: A double blind, double placebo controlled factorial trial was performed on 52 patients with SLE. Patients were randomly assigned to 4 treatment groups. Physiological doses of omega-3 fish oils and copper readily obtainable by dietary means were used. One group received 3 g MaxEPA and 3 mg copper, another 3 g MaxEPA and placebo copper, another 3 mg copper and placebo fish oil, and the fourth group received both placebo capsules. Serial measurements of disease activity using the revised Systemic Lupus Activity Measure (SLAM-R) and peripheral blood samples for routine hematological, biochemical, and immunological indices were taken at baseline, 6, 12, and 24 weeks. RESULTS: There was a significant decline in SLAM-R score from 6.12 to 4.69 (p <0.05) in those subjects taking fish oil compared to placebo. No significant effect on SLAM-R was observed in subjects taking copper. Laboratory variables were unaffected by either intervention. CONCLUSION: In the management of SLE, dietary supplementation with fish oil may be beneficial in modifying symptomatic disease activity.