997 resultados para occupancy models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper has three primary aims: to establish an effective means for modelling mainland-island metapopulations inhabiting a dynamic landscape: to investigate the effect of immigration and dynamic changes in habitat on metapopulation patch occupancy dynamics; and to illustrate the implications of our results for decision-making and population management. We first extend the mainland-island metapopulation model of Alonso and McKane [Bull. Math. Biol. 64:913-958,2002] to incorporate a dynamic landscape. It is shown, for both the static and the dynamic landscape models, that a suitably scaled version of the process converges to a unique deterministic model as the size of the system becomes large. We also establish that. under quite general conditions, the density of occupied patches, and the densities of suitable and occupied patches, for the respective models, have approximate normal distributions. Our results not only provide us with estimates for the means and variances that are valid at all stages in the evolution of the population, but also provide a tool for fitting the models to real metapopulations. We discuss the effect of immigration and habitat dynamics on metapopulations, showing that mainland-like patches heavily influence metapopulation persistence, and we argue for adopting measures to increase connectivity between this large patch and the other island-like patches. We illustrate our results with specific reference to examples of populations of butterfly and the grasshopper Bryodema tuberculata.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To provide biological insights into transcriptional regulation, a couple of groups have recently presented models relating the promoter DNA-bound transcription factors (TFs) to downstream gene’s mean transcript level or transcript production rates over time. However, transcript production is dynamic in response to changes of TF concentrations over time. Also, TFs are not the only factors binding to promoters; other DNA binding factors (DBFs) bind as well, especially nucleosomes, resulting in competition between DBFs for binding at same genomic location. Additionally, not only TFs, but also some other elements regulate transcription. Within core promoter, various regulatory elements influence RNAPII recruitment, PIC formation, RNAPII searching for TSS, and RNAPII initiating transcription. Moreover, it is proposed that downstream from TSS, nucleosomes resist RNAPII elongation.

Here, we provide a machine learning framework to predict transcript production rates from DNA sequences. We applied this framework in the S. cerevisiae yeast for two scenarios: a) to predict the dynamic transcript production rate during the cell cycle for native promoters; b) to predict the mean transcript production rate over time for synthetic promoters. As far as we know, our framework is the first successful attempt to have a model that can predict dynamic transcript production rates from DNA sequences only: with cell cycle data set, we got Pearson correlation coefficient Cp = 0.751 and coefficient of determination r2 = 0.564 on test set for predicting dynamic transcript production rate over time. Also, for DREAM6 Gene Promoter Expression Prediction challenge, our fitted model outperformed all participant teams, best of all teams, and a model combining best team’s k-mer based sequence features and another paper’s biologically mechanistic features, in terms of all scoring metrics.

Moreover, our framework shows its capability of identifying generalizable fea- tures by interpreting the highly predictive models, and thereby provide support for associated hypothesized mechanisms about transcriptional regulation. With the learned sparse linear models, we got results supporting the following biological insights: a) TFs govern the probability of RNAPII recruitment and initiation possibly through interactions with PIC components and transcription cofactors; b) the core promoter amplifies the transcript production probably by influencing PIC formation, RNAPII recruitment, DNA melting, RNAPII searching for and selecting TSS, releasing RNAPII from general transcription factors, and thereby initiation; c) there is strong transcriptional synergy between TFs and core promoter elements; d) the regulatory elements within core promoter region are more than TATA box and nucleosome free region, suggesting the existence of still unidentified TAF-dependent and cofactor-dependent core promoter elements in yeast S. cerevisiae; e) nucleosome occupancy is helpful for representing +1 and -1 nucleosomes’ regulatory roles on transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predictive models of species distributions are important tools for fisheries management. Unfortunately, these predictive models can be difficult to perform on large waterbodies where fish are difficult to detect and exhaustive sampling is not possible. In recent years the development of Geographic Information Systems (GIS) and new occupancy modelling techniques has improved our ability to predict distributions across landscapes as well as account for imperfect detection. I surveyed the nearshore fish community at 105 sites between Kingston, Ontario and Rockport, Ontario with the objective of modelling geographic and environmental characteristics associated with littoral fish distributions. Occupancy modelling was performed on Round Goby, Yellow perch, and Lepomis spp. Modelling with geographic and environmental covariates revealed the effect of shoreline exposure on nearshore habitat characteristics and the occupancy of Round Goby. Yellow Perch, and Lepomis spp. occupancy was most strongly associated negatively with distance to a wetland. These results are consistent with past research on large lake systems indicate the importance of wetlands and shoreline exposure in determining the fish community of the littoral zone. By examining 3 species with varying rates of occupancy and detection, this study was also able to demonstrate the variable utility of occupancy modelling.