994 resultados para occupancy data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glare indices have yet to be extensively tested in daylit open plan offices, as such there is no effective method to predict discomfort glare within these spaces. This study into discomfort glare in open plan green buildings targeted full-time employees, working under their everyday lighting conditions. Three green buildings in Brisbane were used for data collection, two were Green Star accredited and the other contained innovative daylighting strategies. Data were collected on full-time employees, mostly aged between 30 and 50 years, who broadly reflect the demographics of the wider working population in Australia. It was discovered 36 of the 64 respondents experienced discomfort from both electric and daylight sources at their workspace. The study used a specially tailored post-occupancy evaluation (POE) survey to help assess discomfort glare. Luminance maps extracted from High Dynamic Range (HDR) images were used to capture the luminous environment of the occupants. These were analysed using participant data and the program Evalglare. The physical results indicated no correlation with other developed glare metrics for daylight within these open plan green buildings, including the recently developed Daylight Glare Probability (DGP) Index. The strong influence of vertical illuminance, Ev in the DGP precludes the mostly contrast-based glare from windows observed in this investigation from forming a significant part of this index. Furthermore, critical assessment of the survey techniques used are considered. These will provide insight for further research into discomfort glare in the endeavour to fully develop a suitable glare metric.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, vision-based systems have been deployed in professional sports to track the ball and players to enhance analysis of matches. Due to their unobtrusive nature, vision-based approaches are preferred to wearable sensors (e.g. GPS or RFID sensors) as it does not require players or balls to be instrumented prior to matches. Unfortunately, in continuous team sports where players need to be tracked continuously over long-periods of time (e.g. 35 minutes in field-hockey or 45 minutes in soccer), current vision-based tracking approaches are not reliable enough to provide fully automatic solutions. As such, human intervention is required to fix-up missed or false detections. However, in instances where a human can not intervene due to the sheer amount of data being generated - this data can not be used due to the missing/noisy data. In this paper, we investigate two representations based on raw player detections (and not tracking) which are immune to missed and false detections. Specifically, we show that both team occupancy maps and centroids can be used to detect team activities, while the occupancy maps can be used to retrieve specific team activities. An evaluation on over 8 hours of field hockey data captured at a recent international tournament demonstrates the validity of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research was commissioned by Metecno Pty Ltd, trading as Bondor®. The InsulLiving house was designed and constructed by Bondor®. The house instrumentation (electricity circuits, indoor environment, weather station) was provided by Bondor and supplied and installed by independent contractors. This report contains analysis of data collected from the InsulLiving house at Burpengary during 1 year of occupancy by a family of four for the period 1 April 2012 – 31 March 2013. The data shows a daily average electricity consumption 48% less than the regional average. The analysis confirms that the 9 star house performed thermally slightly better than the simulated performance. The home was 'near zero energy', with its modest 2.1kW solar power system meeting all of the needs for space heating and cooling, lighting and most water heating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To the trained-eye, experts can often identify a team based on their unique style of play due to their movement, passing and interactions. In this paper, we present a method which can accurately determine the identity of a team from spatiotemporal player tracking data. We do this by utilizing a formation descriptor which is found by minimizing the entropy of role-specific occupancy maps. We show how our approach is significantly better at identifying different teams compared to standard measures (i.e., shots, passes etc.). We demonstrate the utility of our approach using an entire season of Prozone player tracking data from a top-tier professional soccer league.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This presentation investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to their unobtrusive nature, vision-based approaches to tracking sports players have been preferred over wearable sensors as they do not require the players to be instrumented for each match. Unfortunately however, due to the heavy occlusion between players, variation in resolution and pose, in addition to fluctuating illumination conditions, tracking players continuously is still an unsolved vision problem. For tasks like clustering and retrieval, having noisy data (i.e. missing and false player detections) is problematic as it generates discontinuities in the input data stream. One method of circumventing this issue is to use an occupancy map, where the field is discretised into a series of zones and a count of player detections in each zone is obtained. A series of frames can then be concatenated to represent a set-play or example of team behaviour. A problem with this approach though is that the compressibility is low (i.e. the variability in the feature space is incredibly high). In this paper, we propose the use of a bilinear spatiotemporal basis model using a role representation to clean-up the noisy detections which operates in a low-dimensional space. To evaluate our approach, we used a fully instrumented field-hockey pitch with 8 fixed high-definition (HD) cameras and evaluated our approach on approximately 200,000 frames of data from a state-of-the-art real-time player detector and compare it to manually labeled data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the absence of information on species in decline with contracting ranges, management should emphasize remaining populations and protection of their habitats. Threatened by anthropogenic pressure including habitat degradation and loss, sloth bears (Melursus ursinus) in India have become limited in range, habitat, and population size. We identified ecological and anthropogenic determinants of occurrence within an occupancy framework to evaluate habitat suitability of non-protected regions (with sloth bears) in northeastern Karnataka, India. We employed a systematic sampling methodology to yield presence absence data to examine a priori hypotheses of determinants that affected occupancy. These covariates were broadly classified as habitat or anthropogenic factors. Mean number of termite mounds and trees positively influenced sloth bear occupancy, and grazing pressure expounded by mean number of livestock dung affected it negatively. Also, mean percentage of shrub coverage had no impact on bear inhabitance. The best fitting model further predicted habitats in Bukkasagara, Agoli, and Benakal reserved forests to have 38%, 75%, and 88%, respectively, of their sampled grid cells with high occupancies (>0.70) albeit little or no legal protection. We recommend a conservation strategy that includes protection of vegetation stand-structure, maintenance of soil moisture, and enrichment of habitat for the long-term welfare of this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND:

End-stage renal disease (ESRD) is increasingly prevalent but the inpatient costs associated with this condition are poorly defined due to limitations with data extraction and failure to differentiate between hospitalisation for renal and non-renal disease reasons. The impact of admissions primarily for the management of ESRD on hospital bed utilisation was assessed over a 5-year period in a large teaching hospital.

METHODS:

All admission episodes were reviewed and the ESRD group was identified by a primary International Classification of Diseases code for ESRD or a non-specific primary renal failure code with a secondary code for ESRD. The frequency and duration of hospitalisation and contribution to bed day occupancy of this group with ESRD was determined.

RESULTS:

There were 70,808 patients responsible for a total of 116,915 admissions and 919,212 bed days over the study period. Of these, 988 (1.4%) patients were admitted for the management of ESRD, accounting for 2,387 (2.0%) of admissions and utilisation of 23,011 (2.5%) bed days. After adjustment for age and gender, those admitted for ESRD management were significantly more likely to have a prolonged admission exceeding 30 days (odds ratio 1.46, 95% confidence interval 1.23-1.72, p < 0.001). When the admission was an emergency rather than an elective event, the patient was 4.6 times more likely to be hospitalised for over 30 days.

CONCLUSIONS:

Persons admitted for ESRD management are hospitalised more frequently and for longer than the overall inpatient population, occupying a substantial number of bed days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Revenue Management’s most cited definitions is probably “to sell the right accommodation to the right customer, at the right time and the right price, with optimal satisfaction for customers and hoteliers”. Smart Revenue Management (SRM) is a project, which aims the development of smart automatic techniques for an efficient optimization of occupancy and rates of hotel accommodations, commonly referred to, as revenue management. One of the objectives of this project is to demonstrate that the collection of Big Data, followed by an appropriate assembly of functionalities, will make possible to generate a Data Warehouse necessary to produce high quality business intelligence and analytics. This will be achieved through the collection of data extracted from a variety of sources, including from the web. This paper proposes a three stage framework to develop the Big Data Warehouse for the SRM. Namely, the compilation of all available information, in the present case, it was focus only the extraction of information from the web by a web crawler – raw data. The storing of that raw data in a primary NoSQL database, and from that data the conception of a set of functionalities, rules, principles and semantics to select, combine and store in a secondary relational database the meaningful information for the Revenue Management (Big Data Warehouse). The last stage will be the principal focus of the paper. In this context, clues will also be giving how to compile information for Business Intelligence. All these functionalities contribute to a holistic framework that, in the future, will make it possible to anticipate customers and competitor’s behavior, fundamental elements to fulfill the Revenue Management

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existing parking simulations, as most simulations, are intended to gain insights of a system or to make predictions. The knowledge they have provided has built up over the years, and several research works have devised detailed parking system models. This thesis work describes the use of an agent-based parking simulation in the context of a bigger parking system development. It focuses more on flexibility than on fidelity, showing the case where it is relevant for a parking simulation to consume dynamically changing GIS data from external, online sources and how to address this case. The simulation generates the parking occupancy information that sensing technologies should eventually produce and supplies it to the bigger parking system. It is built as a Java application based on the MASON toolkit and consumes GIS data from an ArcGis Server. The application context of the implemented parking simulation is a university campus with free, on-street parking places.