902 resultados para object-oriented classification
Resumo:
Refactoring focuses on improving the reusability, maintainability and performance of programs. However, the impact of refactoring on the security of a given program has received little attention. In this work, we focus on the design of object-oriented applications and use metrics to assess the impact of a number of standard refactoring rules on their security by evaluating the metrics before and after refactoring. This assessment tells us which refactoring steps can increase the security level of a given program from the point of view of potential information flow, allowing application designers to improve their system’s security at an early stage.
Resumo:
With the emergence of multi-core processors into the mainstream, parallel programming is no longer the specialized domain it once was. There is a growing need for systems to allow programmers to more easily reason about data dependencies and inherent parallelism in general purpose programs. Many of these programs are written in popular imperative programming languages like Java and C]. In this thesis I present a system for reasoning about side-effects of evaluation in an abstract and composable manner that is suitable for use by both programmers and automated tools such as compilers. The goal of developing such a system is to both facilitate the automatic exploitation of the inherent parallelism present in imperative programs and to allow programmers to reason about dependencies which may be limiting the parallelism available for exploitation in their applications. Previous work on languages and type systems for parallel computing has tended to focus on providing the programmer with tools to facilitate the manual parallelization of programs; programmers must decide when and where it is safe to employ parallelism without the assistance of the compiler or other automated tools. None of the existing systems combine abstraction and composition with parallelization and correctness checking to produce a framework which helps both programmers and automated tools to reason about inherent parallelism. In this work I present a system for abstractly reasoning about side-effects and data dependencies in modern, imperative, object-oriented languages using a type and effect system based on ideas from Ownership Types. I have developed sufficient conditions for the safe, automated detection and exploitation of a number task, data and loop parallelism patterns in terms of ownership relationships. To validate my work, I have applied my ideas to the C] version 3.0 language to produce a language extension called Zal. I have implemented a compiler for the Zal language as an extension of the GPC] research compiler as a proof of concept of my system. I have used it to parallelize a number of real-world applications to demonstrate the feasibility of my proposed approach. In addition to this empirical validation, I present an argument for the correctness of the type system and language semantics I have proposed as well as sketches of proofs for the correctness of the sufficient conditions for parallelization proposed.
Resumo:
We present a hierarchical model for assessing an object-oriented program's security. Security is quantified using structural properties of the program code to identify the ways in which `classified' data values may be transferred between objects. The model begins with a set of low-level security metrics based on traditional design characteristics of object-oriented classes, such as data encapsulation, cohesion and coupling. These metrics are then used to characterise higher-level properties concerning the overall readability and writability of classified data throughout the program. In turn, these metrics are then mapped to well-known security design principles such as `assigning the least privilege' and `reducing the size of the attack surface'. Finally, the entire program's security is summarised as a single security index value. These metrics allow different versions of the same program, or different programs intended to perform the same task, to be compared for their relative security at a number of different abstraction levels. The model is validated via an experiment involving five open source Java programs, using a static analysis tool we have developed to automatically extract the security metrics from compiled Java bytecode.
Resumo:
Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method.
Resumo:
Preservation and enhancement of transportation infrastructure is critical to continuous economic development in Australia. Of particular importance are the road assets infrastructure, due to their high costs of setting up and their social and economic impact on the national economy. Continuous availability of road assets, however, is contingent upon their effective design, condition monitoring, maintenance, and renovation and upgrading. However, in order to achieve this data exchange, integration, and interoperability is required across municipal boundaries. On the other hand, there are no agreed reference frameworks that consistently describe road infrastructure assets. As a consequence, specifications and technical solutions being chosen to manage road assets do not provide adequate detail and quality of information to support asset lifecycle management processes and decisions taken are based on perception not reality. This paper presents a road asset information model, which works as reference framework to, link other kinds of information with asset information; integrate different data suppliers; and provide a foundation for service driven integrated information framework for community infrastructure and asset management.
Resumo:
The serviceability and safety of bridges are crucial to people’s daily lives and to the national economy. Every effort should be taken to make sure that bridges function safely and properly as any damage or fault during the service life can lead to transport paralysis, catastrophic loss of property or even casualties. Nonetheless, aggressive environmental conditions, ever-increasing and changing traffic loads and aging can all contribute to bridge deterioration. With often constrained budget, it is of significance to identify bridges and bridge elements that should be given higher priority for maintenance, rehabilitation or replacement, and to select optimal strategy. Bridge health prediction is an essential underpinning science to bridge maintenance optimization, since the effectiveness of optimal maintenance decision is largely dependent on the forecasting accuracy of bridge health performance. The current approaches for bridge health prediction can be categorised into two groups: condition ratings based and structural reliability based. A comprehensive literature review has revealed the following limitations of the current modelling approaches: (1) it is not evident in literature to date that any integrated approaches exist for modelling both serviceability and safety aspects so that both performance criteria can be evaluated coherently; (2) complex system modelling approaches have not been successfully applied to bridge deterioration modelling though a bridge is a complex system composed of many inter-related bridge elements; (3) multiple bridge deterioration factors, such as deterioration dependencies among different bridge elements, observed information, maintenance actions and environmental effects have not been considered jointly; (4) the existing approaches are lacking in Bayesian updating ability to incorporate a variety of event information; (5) the assumption of series and/or parallel relationship for bridge level reliability is always held in all structural reliability estimation of bridge systems. To address the deficiencies listed above, this research proposes three novel models based on the Dynamic Object Oriented Bayesian Networks (DOOBNs) approach. Model I aims to address bridge deterioration in serviceability using condition ratings as the health index. The bridge deterioration is represented in a hierarchical relationship, in accordance with the physical structure, so that the contribution of each bridge element to bridge deterioration can be tracked. A discrete-time Markov process is employed to model deterioration of bridge elements over time. In Model II, bridge deterioration in terms of safety is addressed. The structural reliability of bridge systems is estimated from bridge elements to the entire bridge. By means of conditional probability tables (CPTs), not only series-parallel relationship but also complex probabilistic relationship in bridge systems can be effectively modelled. The structural reliability of each bridge element is evaluated from its limit state functions, considering the probability distributions of resistance and applied load. Both Models I and II are designed in three steps: modelling consideration, DOOBN development and parameters estimation. Model III integrates Models I and II to address bridge health performance in both serviceability and safety aspects jointly. The modelling of bridge ratings is modified so that every basic modelling unit denotes one physical bridge element. According to the specific materials used, the integration of condition ratings and structural reliability is implemented through critical failure modes. Three case studies have been conducted to validate the proposed models, respectively. Carefully selected data and knowledge from bridge experts, the National Bridge Inventory (NBI) and existing literature were utilised for model validation. In addition, event information was generated using simulation to demonstrate the Bayesian updating ability of the proposed models. The prediction results of condition ratings and structural reliability were presented and interpreted for basic bridge elements and the whole bridge system. The results obtained from Model II were compared with the ones obtained from traditional structural reliability methods. Overall, the prediction results demonstrate the feasibility of the proposed modelling approach for bridge health prediction and underpin the assertion that the three models can be used separately or integrated and are more effective than the current bridge deterioration modelling approaches. The primary contribution of this work is to enhance the knowledge in the field of bridge health prediction, where more comprehensive health performance in both serviceability and safety aspects are addressed jointly. The proposed models, characterised by probabilistic representation of bridge deterioration in hierarchical ways, demonstrated the effectiveness and pledge of DOOBNs approach to bridge health management. Additionally, the proposed models have significant potential for bridge maintenance optimization. Working together with advanced monitoring and inspection techniques, and a comprehensive bridge inventory, the proposed models can be used by bridge practitioners to achieve increased serviceability and safety as well as maintenance cost effectiveness.
Resumo:
Conservation of free-ranging cheetah (Acinonyx jubatus) populations is multi faceted and needs to be addressed from an ecological, biological and management perspective. There is a wealth of published research, each focusing on a particular aspect of cheetah conservation. Identifying the most important factors, making sense of various (and sometimes contrasting) findings, and taking decisions when little or no empirical data is available, are everyday challenges facing conservationists. Bayesian networks (BN) provide a statistical modeling framework that enables analysis and integration of information addressing different aspects of conservation. There has been an increased interest in the use of BNs to model conservation issues, however the development of more sophisticated BNs, utilizing object-oriented (OO) features, is still at the frontier of ecological research. We describe an integrated, parallel modeling process followed during a BN modeling workshop held in Namibia to combine expert knowledge and data about free-ranging cheetahs. The aim of the workshop was to obtain a more comprehensive view of the current viability of the free-ranging cheetah population in Namibia, and to predict the effect different scenarios may have on the future viability of this free-ranging cheetah population. Furthermore, a complementary aim was to identify influential parameters of the model to more effectively target those parameters having the greatest impact on population viability. The BN was developed by aggregating diverse perspectives from local and independent scientists, agents from the national ministry, conservation agency members and local fieldworkers. This integrated BN approach facilitates OO modeling in a multi-expert context which lends itself to a series of integrated, yet independent, subnetworks describing different scientific and management components. We created three subnetworks in parallel: a biological, ecological and human factors network, which were then combined to create a complete representation of free-ranging cheetah population viability. Such OOBNs have widespread relevance to the effective and targeted conservation management of vulnerable and endangered species.
Resumo:
This paper presents an object-oriented world model for the road traffic environment of autonomous (driver-less) city vehicles. The developed World Model is a software component of the autonomous vehicle's control system, which represents the vehicle's view of its road environment. Regardless whether the information is a priori known, obtained through on-board sensors, or through communication, the World Model stores and updates information in real-time, notifies the decision making subsystem about relevant events, and provides access to its stored information. The design is based on software design patterns, and its application programming interface provides both asynchronous and synchronous access to its information. Experimental results of both a 3D simulation and real-world experiments show that the approach is applicable and real-time capable.
Resumo:
language (such as C++ and Java). The model used allows to insert watermarks on three “orthogonal” levels. For the first level, watermarks are injected into objects. The second level watermarking is used to select proper variants of the source code. The third level uses transition function that can be used to generate copies with different functionalities. Generic watermarking schemes were presented and their security discussed.
Resumo:
Computational neuroscience aims to elucidate the mechanisms of neural information processing and population dynamics, through a methodology of incorporating biological data into complex mathematical models. Existing simulation environments model at a particular level of detail; none allow a multi-level approach to neural modelling. Moreover, most are not engineered to produce compute-efficient solutions, an important issue because sufficient processing power is a major impediment in the field. This project aims to apply modern software engineering techniques to create a flexible high performance neural modelling environment, which will allow rigorous exploration of model parameter effects, and modelling at multiple levels of abstraction.
Resumo:
Neu-Model, an ongoing project aimed at developing a neural simulation environment that is extremely computationally powerful and flexible, is described. It is shown that the use of good Software Engineering techniques in Neu-Model’s design and implementation is resulting in a high performance system that is powerful and flexible enough to allow rigorous exploration of brain function at a variety of conceptual levels.
Resumo:
Tutkielma käsittelee nykyisiä kognitiotieteen teorioita käsitteistä ja niiden mallintamista oliokeskeisillä tietämyksen esittämisen menetelmillä. Käsiteteorioista käsitellään klassinen, määritelmäteoria, prototyyppiteoria, duaaliteoriat, uusklassinen teoria, teoria-teoria ja atomistinen teoria. Oliokeskeiset menetelmät ovat viime aikoina jakautuneet kahden tyyppisiin kieliin: oliopohjaisiin ja luokkapohjaisiin. Uudet olio-pohjaiset olio-ohjelmointikielet antavat käsitteiden representointiin mahdollisuuksia, jotka puuttuvat aikaisemmista luokka-pohjaisista kielistä ja myös kehysmenetelmistä. Tutkielma osoittaa, että oliopohjaisten kielten uudet piirteet tarjoavat keinoja, joilla käsitteitä voidaan esittää symbolisessa muodossa paremmin kuin perinteisillä menetelmillä. Niillä pystytään simuloimaan kaikkea mitä luokkapohjaisilla kielillä voidaan, mutta ne pystyvät lisäksi simuloimaan perheyhtäläisyyskäsitteitä ja mahdollistavat olioiden dynaamisen muuttamisen ilman, että siinä rikotaan psykologisen essentialismin periaatetta. Tutkielma osoittaa lisäksi vakavia puutteitta, jotka koskevat koko oliokeskeistä menetelmää. Avainsanat: käsitteet, käsiteteoriat, tekoäly, komputationaalinen psykologia, olio-ohjelmointi, tiedon esittäminen