788 resultados para nutrition accumulation
Resumo:
Um experimento em casa de vegetação foi conduzido entre novembro de 2006 e abril de 2007, na FCAV/UNESP, Brasil, objetivando estudar a produção de massa seca, a distribuição e o acúmulo de macronutrientes por Ipomoea quamoclit, uma importante planta infestante de culturas anuais e perenes no Brasil. As plantas foram cultivadas em vasos de 7 L com substrato de areia, que foram irrigados diariamente com solução nutritiva de Hoagland & Arnon. O delineamento experimental foi inteiramente casualizado, com quatro repetições. Os tratamentos corresponderam às épocas de avaliação, em intervalos de 14 dias, iniciando-se 21 dias após a emergência (DAE). em cada avaliação, as plantas de quatro vasos foram analisadas quanto à produção de massa seca e ao conteúdo de macronutrientes. I. quamoclit apresentou pequeno acúmulo de massa seca e de macronutrientes no início da fase experimental. Esses acúmulos intensificaram-se após 77 DAE, atingindo o máximo valor teórico aos 146, 143, 140, 149, 142, 153 e 124 DAE, para massa seca, N, P, K, Ca, Mg e S, respectivamente. K e N foram os macronutrientes acumulados em maior quantidade por plantas de I. quamoclit.
Resumo:
Potassium (K) is required in high doses by the banana (Musa sp.) plant and interacts with other nutrient elements in which banana tissues are maintained under in vitro condition as a consequence modifications in the plant metabolism take place mainly in nitrogen (N) compounds, such as proteins, amino acids, and secondary compounds. When K is present in concentrations lower than that required, diamines such as putrescine and poliamines are formed. This metabolic disorder can also be correlated with the presence of different inorganic N forms, such as nitrate (NO3) and ammonium (NH4), and the ratios between both ions as well. In order to follow the physiological performance of the interrelationships, K/putrescine and of the NO3/NH4 ratio in the tissue of banana vitroplantlets, shoot apex of two banana cvs. Nanica and Prata Ana were maintained in modified MS medium in the presence of six different doses of K: 5, 10, 15, 20, 25, and 30 mM. After the period of tissue proliferation the cultures were transferred to rooting media containing the same different K doses. Dry matter, K, putrescine, and spermidine contents and their accumulation were determined in the shoots and roots of the vitroplantlets and in the shoot apex of the explant donor cultivar as well as the corresponding values for the whole vitroplantlets calculated. The data were statistically analyzed. The contents and accumulations of putrescine and spermidine in banana tissues were enhanced as K concentration decreased in the medium: four times (0.19% of the dry matter) for cv. Nanica and eight times (0.25% of the dry matter) for cv. Prata Ana. This behavior was not only related to the K depletion but to the NO3/NH4 ratio as well.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effects of triple superphosphate (TS) and liming on macronutrient accumulation and root growth of Pioneer 3072 and Cargill 505 com hybrids were studied. Com plants were grown up to 30 days in pots with 7 L of a dark red Latosol sandy loam (Haplortox). Lime was applied to raise base saturation to 30, 50, and 70%, in two levels of phosphorus (P) fertilization with TS (0 and 200 ppm P). There was an increase in root surface due to lime only in pots without TS, with no effects on plant growth or nutrition. Both com hybrids responded to P fertilization, but Pioneer yielded more dry matter than Cargill. The roots of Cargill were thicker and, when in TS presence, were longer and had a larger surface than Pioneer. There was an increase in macronutrient uptake in the P fertilized pots. Pioneer required more nutrients and showed a higher efficiency in acquiring and utilizing the nutrients from the soil. A higher response of Pioneer in dry matter and nutrient acquisition was more related to the physiological efficiency than to root morphology.
Resumo:
Silicon can alleviate biotic and abiotic stresses in several crops, and it has beneficial effects on plants under nonstressed conditions. However, there is still doubt about foliar-applied Si efficiency and Si effects on mineral nutrition, physiological processes, and growth of potato (Solanum tuberosum L.) plants under wellwatered conditions. The objective of this study was to evaluate the effect of soil and foliar application of soluble Si on Si accumulation, nutrients, and pigments concentration as well as gas exchange and growth of potato plants. The experiment was conducted under greenhouse conditions in pots containing 35 dm3 of a Typic Acrortox soil. The treatments consisted of a control (no Si application), soil application of soluble Si (50 mg dm-3 Si), and foliar application of soluble Si (three sprays of 1.425 mM Si water solution, prepared with a soluble concentrate stabilized silicic acid), with eight replications. Both soil and foliar application of Si resulted in higher Si accumulation in the whole plant. Foliar application of Si resulted in the greatest Si concentration in leaves, and soil application increased Si concentration in leaves, stems, and roots. Silicon application, regardless of the application method, increased leaf area, specific leaf area, and pigment concentration (chlorophyll a and carotenoids) as well as photosynthesis and transpiration rates of wellwatered potato plants. However, only soil application increased P concentration in leaves and dry weight of leaves and stems. © Crop Science Society of America.
Resumo:
Knowledge of the most essential nutrients for plant growth facilitates the efficient handling of its nutrition, especially when they are grown on a substrate supported by fertigation. The objective of this study was to determine the accumulation of nutrients in net melon grown on a substrate and understand the relationship between mineral nutrition and plant growth. The Fantasy hybrid was cultivated in pots containing a substrate consisting of a mixture of sand and peanut shells (ratio, 1:1). Determination of nutrient accumulation was performed in 6 seasons. The substrate was chemically characterized before and after cultivation. Harvesting occurred 78 days after transplantation, resulting in an average yield of 70,120 kg·ha-1. Substrate analysis showed a small increase in nutrient levels by the end of cultivation. The order of nutrient accumulation was as follows: N>Ca>K>P>Mg>S>B> Fe>Mn>Zn>Cu.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The initial growth and mineral nutrition of the physic nut (Jatropha curcas L.) as a function of nitrogen (N) fertilization was investigated. The transplanting of seedlings was carried out in plastic pots filled with 50 dm3 of a Rhodic Hapludox, under a plastic greenhouse. In addition to a control treatment, the dosages of 0, 40, 80, 120, and 160 mg dm−3 N were tested. The results demonstrated that N fertilization for the cultivation of physic nut could be added as top dressing from 60 days after planting with a dosage of 65 mg dm−3. A SPAD index of 46 can be used as a nutritional reference to its initial development. Furthermore, the results suggested that the order of nutrient accumulation by the physic nut plants is as follows: potassium (K) > N > magnesium (Mg) > calcium (Ca) > phosphorus (P) > sulfur (S) > iron (Fe) > manganese (Mn) > boron (B) > zinc (Zn) > copper (Cu).
Resumo:
Several biological and clinical studies have suggested that conjugated linoleic acid (CLA) prevents body fat accumulation and increases lean body mass. CLA is available as a concentrated dietary supplement and is purported to provide the aforementioned benefits for people who perform physical activity. This study was conducted to evaluate the effect of a CLA-supplemented diet combined with physical activity on the body composition of Wistar rats. Two groups of Wistar rats of both sexes, between 45 and 60 days old, were fed a diet containing 5.5% soybean oil (control group) or a CLA-supplemented diet (0.5% CLA and 5.0% soybean oil) (test group). Half the rats in both groups were assigned to exercise by running on a treadmill. The biochemical and anatomical body compositions were analyzed. In both groups, CLA had no effect on the dietary consumption or the weight of the liver, heart, and lungs. However, it did influence the overall weight gain of exercised male rats and the chemical and anatomical body composition in exercised and sedentary rats of both sexes. The results confirm that a CLA-supplemented diet with and without physical activity reduced body fat accumulation in rats of both sexes. However, there is no evidence of an increase in the lean body mass of the exercised rats.
Resumo:
The objective of this thesis was to study the response mechanisms of grapevine to Fe-deficiency and to potential Fe chlorosis prevention strategies. The results show that the presence of bicarbonate in the nutrient solution shifted the activity of PEPC and TCA cycle enzymes and the accumulation/translocation of organic acids in roots of Fe-deprived plants. The rootstock 140 Ruggeri displayed a typical behavior of calcicole plants under bicarbonate stress. The Fe chlorosis susceptible rootstock 101-14 reacted to a prolonged Fe-deficiency reducing the root activity of PEPC and MDH. Noteworthy, it accumulates high levels of citric acid in roots, indicating a low capacity to utilizing, transporting and/or exudating organic acids into the rhizosfere. In contrast, 110 Richter rootstock is capable to maintain an active metabolism of organic acids in roots, accumulating them to a lesser extent than 101-14. Similarly to 101-14, SO4 genotype displays a strong decrease of mechanisms associated to Fe chlorosis tolerance (PEPC and MDH enzymes). Nevertheless it is able to avoid excessive accumulation of citric acid in roots, similar as 110 Richter rootstock. Intercropping with Festuca rubra increased leaf chlorophyll content and net photosynthesis. In addition, intercropping reduces the activity of PEPC in roots, similary to Fe-chelate supply. Applications of NH4+ with nitrification inhibitor prevents efficiently Fe-deficiency, increases chlorophyll content, and induces similar root biochemical responses as Fe-EDDHA. Without the addition of nitrification inhibitors, the effectiveness of NH4+ supply on Fe chlorosis prevention resulted significantly lower. The aspects intertwined in this investigation highlight the complexity of Fe physiology and the fine metabolic tuning of grapevine genotypes to Fe availability and soil-related environmental factors. The experimental evidences reveal the need to carry out future researches on Fe nutrition maintaining a continous flow of knowledge between theoretical and agronomical perspectives for fully supporting the efforts devoted to convert science into practice.
Resumo:
Mungbean (Vigna radiata L.), as a dryland grain legume, is exposed to varying timing and severity of water deficit, which results in variability in grain yield, nitrogen accumulation and grain quality. In this field study, mungbean crops were exposed to varying timing and severity of water deficit in order to examine: (1) contribution of the second flush of pods to final grain yield with variable timing of relief from water deficit, (2) the sensitivity to water deficit of the accumulation of biomass and nitrogen (N) and its partitioning to grain, and (3) how the timing of water deficit affects the pattern of harvest index (HI) increase through pod filling. The results showed that the contribution of the second flush to final yield is highly variable (1-56%) and can be considerable, especially where mid-season stress is relieved at early pod filling. The capacity to produce a second flush of pods did not compensate fully for yield reduction due to water stress. Relief from mid-season stress also resulted in continued leaf production, N-2 fixation and vegetative biomass accumulation during pod filling. Despite the wide variation in the degree of change in vegetative biomass and N during pod filling, there were strong relationships between grain yield and net-above-ground biomass at maturity, and grain N and above-ground N at maturity. Only in the extreme situations were HI and nitrogen HI affected noticeably. In those treatments where there was a large second flush of pods, there was a pronounced biphasic pattern to pod number production, with HI also progressing through two distinct phases of increase separated by a plateau. The proportion of grain yield contributed to by biomass produced before pod filling varied from 0 to 61% with the contribution greatest under terminal water deficit. There was a larger effect of water deficit on N accumulation, and hence N-2 fixation, than on biomass accumulation. The study confirmed the applicability of a number of long-standing physiological concepts to the analysis of the effect of water deficit on mungbean, but also highlighted the difficulty of accounting for timing effects of water deficit where second flushes of pods alter canopy development, biomass and yield accumulation, and N dynamics. Crown Copyright (C) 2003 Published by Elsevier B.V. All rights reserved.
Resumo:
Acknowledgements We thank B. Lahner, E. Yakubova and S. Rikiishi for ICP-MS analysis, N. Komiyama, Iowa State University Plant Transformation Facility and Prashant Hosmani for generation of transgenic rice, K. Wang for providing pTF101.1 vector and N. Verbruggen for providing pYES2 and pYEC2/CT-GFP vectors. We also thank Rice T-DNA Insertion Sequence Database center for providing the T-DNA insertion line and X. Wang, T. Zheng and Z. Li for accessing 3 K rice genome sequence, and Graeme Paton for helpful discussions on Cu bioavailability in water-logged soils. This research was supported by a Grant-in-Aid for Specially promoted Research (JSPS KAKENHI Grant Number 16H06296 to J.F.M), and the US National Science Foundation, Plant Genome Research Program (Grant #IOS 0701119 to D.E.S., M.L.G. and S.R.M.P.).
Resumo:
Land-based aquaculture facilities experience occasional hypercapnic conditions due to the accumulation of the metabolic waste product carbon dioxide. Pre-gonadal Lytechinus variegatus (horizontal diameter=20 mm) were exposed to control (608 µatm pCO2, pH 8.1) or hypercapnic conditions (1738 µatm pCO2, pH 7.7) in synthetic seawater for 14 weeks. Sea urchins exposed to hypercapnic conditions exhibited significantly slower growth (reduced dry matter production), primarily due to reduced test production. Higher fecal production rates and lower ash absorption efficiency (%) in individuals exposed to hypercapnic conditions suggest the ability to process or retain dietary carbonates may have been affected. Significant increases in neutral lipid storage in the gut and increased soluble protein storage in the gonads of individuals exposed to hypercapnic conditions suggest alterations in nutrient metabolism and storage. Furthermore, organic production and energy allocation increased in the lantern of those individuals exposed to hypercapnic conditions. These results suggest chronic exposure to hypercapnic conditions alters nutrient allocation to organ systems and functions, leading to changes in somatic and reproductive production.