957 resultados para novel algorithm
Resumo:
This paper presents a novel algorithm to successfully achieve viable integrity and authenticity addition and verification of n-frame DICOM medical images using cryptographic mechanisms. The aim of this work is the enhancement of DICOM security measures, especially for multiframe images. Current approaches have limitations that should be properly addressed for improved security. The algorithm proposed in this work uses data encryption to provide integrity and authenticity, along with digital signature. Relevant header data and digital signature are used as inputs to cipher the image. Therefore, one can only retrieve the original data if and only if the images and the inputs are correct. The encryption process itself is a cascading scheme, where a frame is ciphered with data related to the previous frames, generating also additional data on image integrity and authenticity. Decryption is similar to encryption, featuring also the standard security verification of the image. The implementation was done in JAVA, and a performance evaluation was carried out comparing the speed of the algorithm with other existing approaches. The evaluation showed a good performance of the algorithm, which is an encouraging result to use it in a real environment.
Resumo:
To present a novel algorithm for estimating recruitable alveolar collapse and hyperdistension based on electrical impedance tomography (EIT) during a decremental positive end-expiratory pressure (PEEP) titration. Technical note with illustrative case reports. Respiratory intensive care unit. Patients with acute respiratory distress syndrome. Lung recruitment and PEEP titration maneuver. Simultaneous acquisition of EIT and X-ray computerized tomography (CT) data. We found good agreement (in terms of amount and spatial location) between the collapse estimated by EIT and CT for all levels of PEEP. The optimal PEEP values detected by EIT for patients 1 and 2 (keeping lung collapse < 10%) were 19 and 17 cmH(2)O, respectively. Although pointing to the same non-dependent lung regions, EIT estimates of hyperdistension represent the functional deterioration of lung units, instead of their anatomical changes, and could not be compared directly with static CT estimates for hyperinflation. We described an EIT-based method for estimating recruitable alveolar collapse at the bedside, pointing out its regional distribution. Additionally, we proposed a measure of lung hyperdistension based on regional lung mechanics.
Resumo:
Retinal imaging with a confocal scaning laser Ophthalmoscope (cSLO) involves scanning a small laser beam over the retina and constructing an image from the reflected light. By applying the confocal principle, tomographic images can be produced by measuring a sequence of slices at different depths. However, the thickness of such slices, when compared with the retinal thickness, is too large to give useful 3D retinal images, if no processing is done. In this work, a prototype cSLO was modified in terms hardware and software to give the ability of doing the tomographic measurements with the maximum theoretical axial resolution possible. A model eye was built to test the performance of the system. A novel algorithm has been developed which fits a double Gaussian curve to the axial intensity profiles generated from a stack of images slices. The underlying assumption is that the laser light has mainly been reflected by two structures in the retina, the internal limiting membrane and the retinal pigment epithelium. From the fitted curve topographic images and novel thickness images of the retina can be generated. Deconvolution algorithms have also been developed to improve the axial resolution of the system, using a theoretically predicted cSLO point spread function. The technique was evaluated using measurements made on a model eye, four normal eyes and seven eyes containing retinal pathology. The reproducibility, accuracy and physiological measurements obtained, were compared with available published data, and showed good agreement. The difference in the measurements when using a double rather than a single Gaussian model was also analysed.
Resumo:
Consider the problem of designing an algorithm for acquiring sensor readings. Consider specifically the problem of obtaining an approximate representation of sensor readings where (i) sensor readings originate from different sensor nodes, (ii) the number of sensor nodes is very large, (iii) all sensor nodes are deployed in a small area (dense network) and (iv) all sensor nodes communicate over a communication medium where at most one node can transmit at a time (a single broadcast domain). We present an efficient algorithm for this problem, and our novel algorithm has two desired properties: (i) it obtains an interpolation based on all sensor readings and (ii) it is scalable, that is, its time-complexity is independent of the number of sensor nodes. Achieving these two properties is possible thanks to the close interlinking of the information processing algorithm, the communication system and a model of the physical world.
Resumo:
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
Resumo:
Climate science indicates that climate stabilization requires low GHG emissions. Is thisconsistent with nondecreasing human welfare?Our welfare or utility index emphasizes education, knowledge, and the environment. Weconstruct and calibrate a multigenerational model with intertemporal links provided by education,physical capital, knowledge and the environment.We reject discounted utilitarianism and adopt, first, the Pure Sustainability Optimization (orIntergenerational Maximin) criterion, and, second, the Sustainable Growth Optimization criterion,that maximizes the utility of the first generation subject to a given future rate of growth. We applythese criteria to our calibrated model via a novel algorithm inspired by the turnpike property.The computed paths yield levels of utility higher than the level at reference year 2000 for allgenerations. They require the doubling of the fraction of labor resources devoted to the creation ofknowledge relative to the reference level, whereas the fractions of labor allocated to consumptionand leisure are similar to the reference ones. On the other hand, higher growth rates requiresubstantial increases in the fraction of labor devoted to education, together with moderate increasesin the fractions of labor devoted to knowledge and the investment in physical capital.
Resumo:
This review assesses the presentation, management, and outcome of delayed postpancreatectomy hemorrhage (PPH) and suggests a novel algorithm as possible standard of care.An electronic search of Medline and Embase databases from January 1990 to February 2010 was undertaken. A random-effect meta-analysis for success rate and mortality of laparotomy vs. interventional radiology after delayed PPH was performed.Fifteen studies comprising of 248 patients with delayed PPH were included. Its incidence was of 3.3%. A sentinel bleed heralding a delayed PPH was observed in 45% of cases. Pancreatic leaks or intraabdominal abscesses were found in 62%. Interventional radiology was attempted in 41%, and laparotomy was undertaken in 49%. On meta-analysis comparing laparotomy vs. interventional radiology, no significant difference could be found in terms of complete hemostasis (76% vs. 80%; P = 0.35). A statistically significant difference favored interventional radiology vs. laparotomy in term of mortality (22% vs. 47%; P = 0.02).Proper management of postoperative complications, such as pancreatic leak and intraabdominal abscess, minimizes the risk of delayed PPH. Sentinel bleeding needs to be thoroughly investigated. If a pseudoaneurysm is detected, it has to be treated by interventional angiography, in order to prevent a further delayed PPH. Early angiography and embolization or stenting is safe and should be the procedure of choice. Surgery remains a therapeutic option if no interventional radiology is available, or patients cannot be resuscitated for an interventional treatment.
Resumo:
Objective:This review assesses the presentation,management, and outcome of delayed postpancreatectomy hemorrhage (PPH) and suggests a novel algorithm as possible standard of care.Methods: An electronic search of Medline and Embase databases from January 1990 to February 2010 was undertaken. A random-effect meta-analysis for success rate and mortality of laparotomy vs. interventional radiology after delayed PPH was performed.Results: Fifteen studies including 248 patients with delayed PPH were included. Its incidence was 3?3%. A sentinel bleed heralding a delayed PPH was observed in 45% of cases. Pancreatic leaks or intraabdominal abscesses were found in 62%. Interventional radiology was attempted in 41%, and laparotomy was undertaken in 49%. On meta-analysis comparing laparotomy vs. interventional radiology, no significant difference could be observed in term of complete hemostasis (76% vs. 80%; P = 0?35). A statistically significant difference favored interventional radiology vs. laparotomy in term of mortality (22% vs. 47%; P = 0?02).Conclusion: Proper and early management of postoperative complications, such as pancreatic leak and intraabdominal abscess, minimizes the risk of delayed PPH. Sentinel bleeding needs to be thoroughly investigated. If a pseudoaneurysm is detected, it has to be treated by interventional angiography, in order to prevent a further delayed PPH. Early angiography and embolization or stenting is safe and should be the procedure of choice. Surgery remains a therapeutic option if no interventional radiology is available, or patients cannot be resuscitated for an interventional treatment.
Resumo:
Cette thèse porte sur l’amélioration des techniques d’imagerie à haut-contraste permettant la détection directe de compagnons à de faibles séparations de leur étoile hôte. Plus précisément, elle s’inscrit dans le développement du Gemini Planet Imager (GPI) qui est un instrument de deuxième génération pour les télescopes Gemini. Cette caméra utilisera un spectromètre à champ intégral (SCI) pour caractériser les compagnons détectés et pour réduire le bruit de tavelure limitant leur détection et corrigera la turbulence atmosphérique à un niveau encore jamais atteint en utilisant deux miroirs déformables dans son système d’optique adaptative (OA) : le woofer et le tweeter. Le woofer corrigera les aberrations de basses fréquences spatiales et de grandes amplitudes alors que le tweeter compensera les aberrations de plus hautes fréquences ayant une plus faible amplitude. Dans un premier temps, les performances pouvant être atteintes à l’aide des SCIs présentement en fonction sur les télescopes de 8-10 m sont investiguées en observant le compagnon de l’étoile GQ Lup à l’aide du SCI NIFS et du système OA ALTAIR installés sur le télescope Gemini Nord. La technique de l’imagerie différentielle angulaire (IDA) est utilisée pour atténuer le bruit de tavelure d’un facteur 2 à 6. Les spectres obtenus en bandes JHK ont été utilisés pour contraindre la masse du compagnon par comparaison avec les prédictions des modèles atmosphériques et évolutifs à 8−60 MJup, où MJup représente la masse de Jupiter. Ainsi, il est déterminé qu’il s’agit plus probablement d’une naine brune que d’une planète. Comme les SCIs présentement en fonction sont des caméras polyvalentes pouvant être utilisées pour plusieurs domaines de l’astrophysique, leur conception n’a pas été optimisée pour l’imagerie à haut-contraste. Ainsi, la deuxième étape de cette thèse a consisté à concevoir et tester en laboratoire un prototype de SCI optimisé pour cette tâche. Quatre algorithmes de suppression du bruit de tavelure ont été testés sur les données obtenues : la simple différence, la double différence, la déconvolution spectrale ainsi qu’un nouvel algorithme développé au sein de cette thèse baptisé l’algorithme des spectres jumeaux. Nous trouvons que l’algorithme des spectres jumeaux est le plus performant pour les deux types de compagnons testés : les compagnons méthaniques et non-méthaniques. Le rapport signal-sur-bruit de la détection a été amélioré d’un facteur allant jusqu’à 14 pour un compagnon méthanique et d’un facteur 2 pour un compagnon non-méthanique. Dernièrement, nous nous intéressons à certains problèmes liés à la séparation de la commande entre deux miroirs déformables dans le système OA de GPI. Nous présentons tout d’abord une méthode utilisant des calculs analytiques et des simulations Monte Carlo pour déterminer les paramètres clés du woofer tels que son diamètre, son nombre d’éléments actifs et leur course qui ont ensuite eu des répercussions sur le design général de l’instrument. Ensuite, le système étudié utilisant un reconstructeur de Fourier, nous proposons de séparer la commande entre les deux miroirs dans l’espace de Fourier et de limiter les modes transférés au woofer à ceux qu’il peut précisément reproduire. Dans le contexte de GPI, ceci permet de remplacer deux matrices de 1600×69 éléments nécessaires pour une séparation “classique” de la commande par une seule de 45×69 composantes et ainsi d’utiliser un processeur prêt à être utilisé plutôt qu’une architecture informatique plus complexe.
Resumo:
Généralement, les problèmes de conception de réseaux consistent à sélectionner les arcs et les sommets d’un graphe G de sorte que la fonction coût est optimisée et l’ensemble de contraintes impliquant les liens et les sommets dans G sont respectées. Une modification dans le critère d’optimisation et/ou dans l’ensemble de contraintes mène à une nouvelle représentation d’un problème différent. Dans cette thèse, nous nous intéressons au problème de conception d’infrastructure de réseaux maillés sans fil (WMN- Wireless Mesh Network en Anglais) où nous montrons que la conception de tels réseaux se transforme d’un problème d’optimisation standard (la fonction coût est optimisée) à un problème d’optimisation à plusieurs objectifs, pour tenir en compte de nombreux aspects, souvent contradictoires, mais néanmoins incontournables dans la réalité. Cette thèse, composée de trois volets, propose de nouveaux modèles et algorithmes pour la conception de WMNs où rien n’est connu à l’ avance. Le premiervolet est consacré à l’optimisation simultanée de deux objectifs équitablement importants : le coût et la performance du réseau en termes de débit. Trois modèles bi-objectifs qui se différent principalement par l’approche utilisée pour maximiser la performance du réseau sont proposés, résolus et comparés. Le deuxième volet traite le problème de placement de passerelles vu son impact sur la performance et l’extensibilité du réseau. La notion de contraintes de sauts (hop constraints) est introduite dans la conception du réseau pour limiter le délai de transmission. Un nouvel algorithme basé sur une approche de groupage est proposé afin de trouver les positions stratégiques des passerelles qui favorisent l’extensibilité du réseau et augmentent sa performance sans augmenter considérablement le coût total de son installation. Le dernier volet adresse le problème de fiabilité du réseau dans la présence de pannes simples. Prévoir l’installation des composants redondants lors de la phase de conception peut garantir des communications fiables, mais au détriment du coût et de la performance du réseau. Un nouvel algorithme, basé sur l’approche théorique de décomposition en oreilles afin d’installer le minimum nombre de routeurs additionnels pour tolérer les pannes simples, est développé. Afin de résoudre les modèles proposés pour des réseaux de taille réelle, un algorithme évolutionnaire (méta-heuristique), inspiré de la nature, est développé. Finalement, les méthodes et modèles proposés on été évalués par des simulations empiriques et d’événements discrets.
Resumo:
L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.
Resumo:
Biclustering is simultaneous clustering of both rows and columns of a data matrix. A measure called Mean Squared Residue (MSR) is used to simultaneously evaluate the coherence of rows and columns within a submatrix. In this paper a novel algorithm is developed for biclustering gene expression data using the newly introduced concept of MSR difference threshold. In the first step high quality bicluster seeds are generated using K-Means clustering algorithm. Then more genes and conditions (node) are added to the bicluster. Before adding a node the MSR X of the bicluster is calculated. After adding the node again the MSR Y is calculated. The added node is deleted if Y minus X is greater than MSR difference threshold or if Y is greater than MSR threshold which depends on the dataset. The MSR difference threshold is different for gene list and condition list and it depends on the dataset also. Proper values should be identified through experimentation in order to obtain biclusters of high quality. The results obtained on bench mark dataset clearly indicate that this algorithm is better than many of the existing biclustering algorithms
Resumo:
Word sense disambiguation is the task of determining which sense of a word is intended from its context. Previous methods have found the lack of training data and the restrictiveness of dictionaries' choices of senses to be major stumbling blocks. A robust novel algorithm is presented that uses multiple dictionaries, the Internet, clustering and triangulation to attempt to discern the most useful senses of a given word and learn how they can be disambiguated. The algorithm is explained, and some promising sample results are given.
Resumo:
We present a novel algorithm for joint state-parameter estimation using sequential three dimensional variational data assimilation (3D Var) and demonstrate its application in the context of morphodynamic modelling using an idealised two parameter 1D sediment transport model. The new scheme combines a static representation of the state background error covariances with a flow dependent approximation of the state-parameter cross-covariances. For the case presented here, this involves calculating a local finite difference approximation of the gradient of the model with respect to the parameters. The new method is easy to implement and computationally inexpensive to run. Experimental results are positive with the scheme able to recover the model parameters to a high level of accuracy. We expect that there is potential for successful application of this new methodology to larger, more realistic models with more complex parameterisations.
Resumo:
A novel algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses dynamic integrated system optimisation and parameter estimation (DISOPE) which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimisation procedure. A new method for approximating some Jacobian trajectories required by the algorithm is introduced. It is shown that the iterative procedure associated with the algorithm naturally suits applications to batch chemical processes.