976 resultados para normal tissue complication probability
Resumo:
RESUME L'infiltration tissulaire par les cellules leucémiques, responsable de leucostase, est une complication grave de la leucémie aiguë hyperleucocytaire. Elle peut entraîner une détresse respiratoire et des troubles neurologiques de mauvais pronostic. Pendant longtemps, la prolifération intravasculaire des cellules leucémiques et l'augmentation de la viscosité étaient considérées comme en étant responsables, et le traitement reposait sur une cytoréduction rapide par leucaphérèse. Actuellement, l'interaction entre les cellules leucémiques et l'endothélium vasculaire est plutôt considérée comme la cause de ce phénomène. En effet, les cellules leucémiques peuvent induire l'expression des sélectives endothéliales. Les sélectives initient le roulement des leucocytes avant leur adhésion ferme et leur migration dans les tissus. Elles reconnaissent des ligands spécifiques exprimés à la surface des leucocytes, comme PSGL-1 qui est un ligand commun des sélectives. Cependant, plusieurs études suggèrent que d'autres ligands de la E-sélective soient exprimés par les leucocytes. L'interaction des cellules leucémiques avec la E- et la P- sélective est corrélée avec l'expression de la molécule CLA, reconnue par l'anticorps HECA-452. L'immunopurification des ligands de la E-sélective avec cet anticorps a permis d'isoler, des cellules THP1 et U937, une protéine de 170 kDa, ainsi qu'une autre protéine de 250 kDa des cellules U937, en plus de PSGL-1. Ces protéines ont également été purifiées avec la protéine de fusion Esélective/IgM. CD43 et CD44 semblent être des ligands de la E-sélective sur certaines lignées, mais leur interaction avec la E-sélective n'est pas toujours retrouvée. De plus, cette étude a permis de montrer que ces ligands de la E-sélectiné sont exprimés dans les rafts lipidiques, comme PSGL-1 et la L-sélective des neutrophiles. Ces deux nouveaux ligands sont en cours d'identification. Ils pourraient représenter une nouvelle cible dans le traitement de la leucostase, mais aussi lors d'inflammation chronique ou de métastases. ABSTRACT Leukostasis is alife-threatening complication of acute leukemia, that results from tissue infiltration of leukemic blasts that migrate out of blood flow and interfere with normal tissue functions. The process leading to these complications has been attributed to the overcrowding of leukemic cells in the microcirculation. However, leukostasis more likely results from the adhesive interactions between leukemic blasts and the endothelium. Activated endothelium express adhesion molecules like P- and E-selectin, and leukemic cells themselves can induce the expression of E-selectin on endothelial cells. Selectins are essential in initiating the rolling of intravascular cells on endothelium before firm adhesion and transmigration outside of blood vessels. They interact with specific ligands on leukocyte cell surface. P-selectin glycoprotein ligand-1 (PSGL-1) is common ligand for E-, P- and L-selectin. Recently, CD44, ESL-1 and CD44 were shown to cooperate. ìn supporting mouse neutrophil adhesion to E-selectin. Other E-selectin ligands remain to be identified in humans. Leukemic cells were screened in order to characterize human E-selectin ligands. The interactions of E- and P-selectin correlate with the expression of CLA epitope. Therefore, HECA-452 mAb that recognizes CLA was used for immunopurification. Aglycoprotein of 170 kDa was purified from THP1 and U937 cells, and a protein of 250 kDa from U937 cells. These proteins were also purified by affinity binding to E-selectin/IgM chimera. PSGL-1 bound to E-selectin as expected, but CD43 and CD44 were not always adsorbed on E-selectin chimera, depending on cell types. E-selectin ligands were also shown to be in lipid rafts in leukemic cells, like PSGL-1 and L-selectin in human neutrophils. The 170 kDa protein has been sequenced, and three interesting ligands were among the candidates: ESL-1, CD44 and podocalyxin. These ligands are under investigation, and may represent a new therapeutic target in leukostasis, inflammation or cancer metastasis.
Resumo:
PURPOSE: We evaluated the feasibility of biomarker development in the context of multicenter clinical trials. EXPERIMENTAL DESIGN: Formalin-fixed, paraffin-embedded (FFPE) tissue samples were collected from a prospective adjuvant colon cancer trial (PETACC3). DNA was isolated from tumor as well as normal tissue and used for analysis of microsatellite instability, KRAS and BRAF genotyping, UGT1A1 genotyping, and loss of heterozygosity of 18 q loci. Immunohistochemistry was used to test expression of TERT, SMAD4, p53, and TYMS. Messenger RNA was retrieved and tested for use in expression profiling experiments. RESULTS: Of the 3,278 patients entered in the study, FFPE blocks were obtained from 1,564 patients coming from 368 different centers in 31 countries. In over 95% of the samples, genomic DNA tests yielded a reliable result. Of the immmunohistochemical tests, p53 and SMAD4 staining did best with reliable results in over 85% of the cases. TERT was the most problematic test with 46% of failures, mostly due to insufficient tissue processing quality. Good quality mRNA was obtained, usable in expression profiling experiments. CONCLUSIONS: Prospective clinical trials can be used as framework for biomarker development using routinely processed FFPE tissues. Our results support the notion that as a rule, translational studies based on FFPE should be included in prospective clinical trials.
Resumo:
BACKGROUND: Isolated lung perfusion (ILP) with free and a novel liposomal-encapsulated doxorubicin (Liporubicin, CT Sciences SA, Lausanne, Switzerland) was compared with respect to drug uptake and distribution in rat lungs bearing a sarcomatous tumor. METHODS: A single sarcomatous tumor was generated in the left lung of 39 Fischer rats, followed 10 days later by left-sided ILP (n = 36) with free and equimolar-dosed liposomal doxorubicin at doses of 100 microg (n = 9) and 400 microg (n = 9) for each doxorubicin formulation. In each perfused lung, the drug concentration and distribution were assessed in the tumor and in three areas of normal lung parenchyma by high-performance liquid chromatography (n = 6) and fluorescence microscopy (n = 3). Histologic assessment and immunostaining with von Willebrand factor was performed in 3 animals with untreated tumors. RESULTS: The sarcomatous tumors in controls were well vascularized with fine branching capillaries present throughout the tumors. Isolated lung perfusion resulted in a heterogeneous drug distribution within the perfused lung and a consistently lower drug uptake in tumors than in lung parenchyma for both doxorubicin formulations and both drug doses applied. Isolated lung perfusion with free doxorubicin resulted in a significantly higher drug uptake than Liporubicin in both the tumor and lung tissue for both drug doses applied (p < 0.01). However, the tumor/normal tissue drug ratio was lower for free than for liposomal doxorubicin at a drug dose of 100 microg (0.27 +/- 0.1 vs 0.53 +/- 0.5; p = 0.225) and similar for both doxorubicin formulations at a drug dose of 400 microg (0.67 +/- 0.2 vs 0.54 +/- 0.2; p = 0.335). Both doxorubicin formulations resulted in fluorescence signaling emerging from all tissue compartments of normal lung parenchyma but only in weak and sporadic signaling from the tumors confined to the tumor periphery and vessels situated within the tumor for both drug doses assessed. CONCLUSIONS: Isolated lung perfusion with free and liposomal doxorubicin resulted in a heterogeneous drug distribution within the perfused lung and in a lower drug uptake in tumors than in lung tissue for both doxorubicin formulations and drug doses applied.
Resumo:
Head and neck cancer patients are at high risk for developing second primary tumors. This is known as field cancerization of the aero-digestive tract. In a previous study, we showed that patients with multiple primary tumors were more likely to have p53 mutations in histologically normal mucosae than patients presenting with an isolated tumor. Based on this observation, we postulated that p53 mutations in normal tissue samples of patients bearing a single primary tumor could have a clinical value as a biomarker for the risk of developing second primary tumors. Thirty-five patients presenting with a single primary tumor were followed-up for a median of 51 months (range 1 month to 10.9 years) after biopsies of histologically normal squamous cell mucosa had been analyzed for p53 mutations with a yeast functional assay at the time of the primary tumor. During this follow-up, recurrences and non-sterilization of the primary tumor, occurrence of lymph node metastases, and of second primary tumors were evaluated. Sixteen (45.7%) patients were found to have p53 mutations in their normal squamous cell mucosa, and 19 (54.3%) patients showed no mutation. No relationship was found between p53 mutations and the occurrence of evaluated events during follow-up. Notably, the rate of second primary tumors was not associated with p53 mutations in the normal squamous mucosa. The correlation between p53 mutations in histologically normal mucosae and the incidence of second primary tumors is generally low. The benefit of analyzing p53 mutations in samples of normal squamous cell mucosa in every patient with a primary tumor of the head and neck is doubtful.
Resumo:
The use of intensity-modulated radiotherapy (IMRT) has increased extensively in the modern radiotherapy (RT) treatments over the past two decades. Radiation dose distributions can be delivered with higher conformality with IMRT when compared to the conventional 3D-conformal radiotherapy (3D-CRT). Higher conformality and target coverage increases the probability of tumour control and decreases the normal tissue complications. The primary goal of this work is to improve and evaluate the accuracy, efficiency and delivery techniques of RT treatments by using IMRT. This study evaluated the dosimetric limitations and possibilities of IMRT in small (treatments of head-and-neck, prostate and lung cancer) and large volumes (primitive neuroectodermal tumours). The dose coverage of target volumes and the sparing of critical organs were increased with IMRT when compared to 3D-CRT. The developed split field IMRT technique was found to be safe and accurate method in craniospinal irradiations. By using IMRT in simultaneous integrated boosting of biologically defined target volumes of localized prostate cancer high doses were achievable with only small increase in the treatment complexity. Biological plan optimization increased the probability of uncomplicated control on average by 28% when compared to standard IMRT delivery. Unfortunately IMRT carries also some drawbacks. In IMRT the beam modulation is realized by splitting a large radiation field to small apertures. The smaller the beam apertures are the larger the rebuild-up and rebuild-down effects are at the tissue interfaces. The limitations to use IMRT with small apertures in the treatments of small lung tumours were investigated with dosimetric film measurements. The results confirmed that the peripheral doses of the small lung tumours were decreased as the effective field size was decreased. The studied calculation algorithms were not able to model the dose deficiency of the tumours accurately. The use of small sliding window apertures of 2 mm and 4 mm decreased the tumour peripheral dose by 6% when compared to 3D-CRT treatment plan. A direct aperture based optimization (DABO) technique was examined as a solution to decrease the treatment complexity. The DABO IMRT technique was able to achieve treatment plans equivalent with the conventional IMRT fluence based optimization techniques in the concave head-and-neck target volumes. With DABO the effective field sizes were increased and the number of MUs was reduced with a factor of two. The optimality of a treatment plan and the therapeutic ratio can be further enhanced by using dose painting based on regional radiosensitivities imaged with functional imaging methods.
Resumo:
In many tumors, the amount of chondroitin sulfate in the extracellular matrix has been shown to be elevated when compared to the corresponding normal tissue. Nevertheless, the degree of chondroitin sulfate increase varies widely. In order to investigate a possible correlation between the amount of chondroitin sulfate and tumor size, several individual specimens of human leiomyoma, a benign uterine tumor, were analyzed. The glycosaminoglycans from eight tumors were extracted and compared with those from the respective adjacent normal myometrium. The main glycosaminoglycan found in normal myometrium was dermatan sulfate, with small amounts of chondroitin sulfate and heparan sulfate. In leiomyoma, both dermatan sulfate and chondroitin sulfate were detected and the total amounts of the two galactosaminoglycans was increased in all tumors when compared to normal tissue. In contrast, the heparan sulfate concentration decreased in the tumor. To assess the disaccharide composition of galactosaminoglycans, these compounds were incubated with bacterial chondroitinases AC and ABC. The amounts of L-iduronic acid-containing disaccharides remained constant, whereas the concentration of D-glucuronic acid-containing disaccharides increased from 2 to 10 times in the tumor, indicating that D-glucuronic acid-containing disaccharides are responsible for the elevation in galactosaminoglycan concentration. This increase is positively correlated with tumor size.
Resumo:
Epithelial intercellular cohesion, mainly mediated by E-cadherin (CDH1) expression and function, may be deregulated during cancer cell invasion of adjacent tissues and lymphatic and vascular channels. CDH1 expression is down-modulated in invasive lobular breast carcinomas but its regulation in invasive ductal carcinomas (IDC) is less clear. CDH1 expression is repressed by transcription factors such as Snail (SNAI1) and its product is degraded after Hakai ubiquitination. We compared CDH1, SNAI1 and HAKAI mRNA expression in IDC and paired adjacent normal breast tissue and evaluated its relation with node metastasis and circulating tumor cells. Matched tumor/peritumoral and blood samples were collected from 30 patients with early IDC. Epithelial cells from each compartment (tumor/peritumoral) were recovered by an immunomagnetic method and gene expression was determined by real time RT-PCR. There were no differences in CDH1, SNAI1 and HAKAI mRNA expression between tumor and corresponding peritumoral samples and no differential tumoral gene expression according to nodal involvement. Another 30 patients with a long-term follow-up (at least 5 years) and a differential prognosis (good or poor, as defined by breast cancer death) had E-cadherin and Snail protein detected by immunohistochemistry in tumor samples. In this group, E-cadherin-positive expression, but not Snail, may be associated with a better prognosis. This is the first report simultaneously analyzing CDH1, SNAI1 and HAKAI mRNA expression in matched tumor and peritumoral samples from patients with IDC. However, no clear pattern of their expression could distinguish the invasive tumor compartment from its adjacent normal tissue.
Resumo:
Although the oral cavity is easily accessible to inspection, patients with oral cancer most often present at a late stage, leading to high morbidity and mortality. Autofluorescence imaging has emerged as a promising technology to aid clinicians in screening for oral neoplasia and as an aid to resection, but current approaches rely on subjective interpretation. We present a new method to objectively delineate neoplastic oral mucosa using autofluorescence imaging. Autofluorescence images were obtained from 56 patients with oral lesions and 11 normal volunteers. From these images, 276 measurements from 159 unique regions of interest (ROI) sites corresponding to normal and confirmed neoplastic areas were identified. Data from ROIs in the first 46 subjects were used to develop a simple classification algorithm based on the ratio of red-to-green fluorescence; performance of this algorithm was then validated using data from the ROIs in the last 21 subjects. This algorithm was applied to patient images to create visual disease probability maps across the field of view. Histologic sections of resected tissue were used to validate the disease probability maps. The best discrimination between neoplastic and nonneoplastic areas was obtained at 405 nm excitation; normal tissue could be discriminated from dysplasia and invasive cancer with a 95.9% sensitivity and 96.2% specificity in the training set, and with a 100% sensitivity and 91.4% specificity in the validation set. Disease probability maps qualitatively agreed with both clinical impression and histology. Autofluorescence imaging coupled with objective image analysis provided a sensitive and noninvasive tool for the detection of oral neoplasia.
Resumo:
Este estudo teve como objetivo avaliar a expressão das metaloproteinases 2 (MMP-2) e 9 (MMP-9) em próstatas caninas normais e com desordens proliferativas, verificando o papel dessas enzimas na remodelação da matriz extracelular (MEC) e no processo de invasão tecidual. Um total de 355 amostras prostáticas foram obtidas, sendo 36 (10,1%) normais, 46 (13,0%) com hiperplasia prostática benigna (HPB), 128 (36,1%) com atrofia inflamatória proliferativa (PIA), 74 (20,8%) com neoplasia intraepitelial prostática (PIN) e 71 (20,0%) com carcinoma prostático (CP). Houve diferença de imunomarcação citoplasmática para MMP-2 e MMP-9 entre o epitélio acinar e o estroma periacinar, quanto aos diferentes diagnósticos. Observou-se correlação entre a expressão de MMP-2 e MMP-9 em relação ao número de células marcadas no epitélio acinar e estroma periacinar, bem como para a intensidade de marcação das células estromais periacinares em próstatas caninas com PIA. Conclui-se que há variação na expressão de MMP-2 e MMP-9 em próstatas caninas de acordo com a lesão, com menor expressão em próstatas caninas normais e com HPB, e maior naquelas com PIA, PIN e CP. Ainda, o microambiente inflamatório na PIA influencia a atividade de ambas as enzimas.
Resumo:
Prostatic lesions such as prostatic intraepithelial neoplasia (PIN) and proliferative inflammatory atrophy (PIA) are studied in human and canine species due to their malignance potential. The plasminogen activator (PA) system has been suggested to play a central role in cell adhesion, angiogenesis, inflammation, and tumor invasion. The urokinase-type plasminogen activator receptor (uPAR) is a component of the PA, with a range of expression in tumor and stromal cells. In this study, uPAR expression in both canine normal prostates and with proliferative disorders (benign prostatic hyperplasia-BPH, proliferative inflammatory atrophy-PIA, prostatic intraepithelial neoplasia-PIN, and carcinoma-PC) was evaluated by immunohistochemistry in a tissue microarray (TMA) slide to establish the role of this enzyme in extracellular matrix (ECM) remodeling and in the processes of tissue invasion. A total of 298 cores and 355 diagnoses were obtained, with 36 (10.1%) normal prostates, 46 (13.0%) with BPH, 128 (36.1%) with PIA, 74 (20.8%) with PIN and 71 (20.0%) with PC. There is variation in the expression of uPAR in canine prostate according to the lesion, with lower expression in normal tissue and with BPH, and higher expression in tissue with PIA, PIN and PC. The high expression of uPAR in inflammatory and neoplastic microenvironment indicates increased proteolytic activity in canine prostates with PIA, PIN, and PC.
Resumo:
The aim of this study was to evaluate the response of rat subcutaneous tissue to MTA Fillapex® (Angelus), an experimental root canal filling material based on Portland cement and propylene glycol (PCPG), and a zinc oxide, eugenol and iodoform (ZOEI) paste. These materials were placed in polyethylene tubes and implanted into the dorsal connective tissue of Wistar rats for 7 and 15 days. The specimens were stained with hematoxylin and eosin, and evaluated regarding inflammatory reaction parameters by optical microscopy. The intensity of inflammatory response against the sealers was analyzed by two blinded and previously calibrated examiners for all experimental periods (kappa=0.96). The histological evaluation showed that all materials caused a moderate inflammatory reaction at 7 days, which subsided with time. A greater inflammatory reaction was observed at 7 days in the tubes filled with ZOEI paste. Tubes filled with MTA Fillapex presented some giant cells, macrophages and lymphocytes after 7 days. At 15 days, the presence of fibroblasts and collagen fibers was observed indicating normal tissue healing. The tubes filled with PCPG showed similar results to those observed in MTA Fillapex. At 15 days, the inflammatory reaction was almost absent at the tissue, with several collagen fibers indicating normal tissue healing. Data were analyzed by the nonparametric Kruskal-Wallis test (?=0.05). Statistically significant difference (p<0.05) was found only between PCPG at 15 days and ZOEI at 7 days groups. No significant differences were observed among the other groups/periods (p>0.05). MTA Fillapex and Portland cement added with propylene glycol had greater tissue compatibility than the PCPG paste.
Resumo:
Introduction: The sealers can be in direct contact with the periapical tissues. Thus, these materials must have appropriate physical and biological properties, providing conditions for repair to occur. Objective: The aim of this study was to evaluate the response of rat subcutaneous tissue to endodontics sealers. Material and methods: Three materials comprised the groups: group I – Zinc Oxide, Eugenol and Iodoform paste, group II – Portland cement with propylene glycol, and group III – MTA Fillapex® (Angelus). These materials were placed in polyethylene tubes and implanted into dorsal connective tissue of Wistar rats for seven and 15 days. The specimens were stained with hematoxylin and eosin and evaluated regarding to inflammatory reaction parameters through a light microscope. The data were compared using Kruskal-Wallis test with significance level of 5%. The intensity of inflammatory response against the sealers was analyzed by two blinded and previously calibrated observers for all experimental periods. Results: The histological evaluation showed that all the materials caused a moderated inflammatory reaction at seven days which decreased with time. A greater inflammatory reaction was observed at seven days in group I. The other specimens had significantly less inflammatory cells when compared to this group. Tubes with MTA Fillapex® presented some giant cells, macrophages and lymphocytes after seven days. At 15 days, the presence of fibroblasts and collagen fibers was observed indicating normal tissue healing. The group II showed similar results to those observed in MTA Fillapex® already at seven days. At 15 days the inflammatory reaction presented was almost absent at the tissue, with many collagen fibers indicating normal tissue healing. Statistical analysis showed a significant statistical difference amongst the group I (seven days) and II (15 days) (p < 0.05). In the other groups no (Continue)
Resumo:
Introduction: The sealers can be in direct contact with the periapical tissues. Thus, these materials must have appropriate physical and biological properties, providing conditions for repair to occur. Objective: The aim of this study was to evaluate the response of rat subcutaneous tissue to endodontics sealers. Material and methods: Three materials comprised the groups: group I – Zinc Oxide, Eugenol and Iodoform paste, group II – Portland cement with propylene glycol, and group III – MTA Fillapex® (Angelus). These materials were placed in polyethylene tubes and implanted into dorsal connective tissue of Wistar rats for seven and 15 days. The specimens were stained with hematoxylin and eosin and evaluated regarding to inflammatory reaction parameters through a light microscope. The data were compared using Kruskal-Wallis test with significance level of 5%. The intensity of inflammatory response against the sealers was analyzed by two blinded and previously calibrated observers for all experimental periods. Results: The histological evaluation showed that all the materials caused a moderated inflammatory reaction at seven days which decreased with time. A greater inflammatory reaction was observed at seven days in group I. The other specimens had significantly less inflammatory cells when compared to this group. Tubes with MTA Fillapex® presented some giant cells, macrophages and lymphocytes after seven days. At 15 days, the presence of fibroblasts and collagen fibers was observed indicating normal tissue healing. The group II showed similar results to those observed in MTA Fillapex® already at seven days. At 15 days the inflammatory reaction presented was almost absent at the tissue, with many collagen fibers indicating normal tissue healing. Statistical analysis showed a significant statistical difference amongst the group I (seven days) and II (15 days) (p < 0.05). In the other groups no significant statistical differences were observed. Conclusion: MTA Fillapex® and Portland cement with propylene glycol were more biocompatible than the other tested cements.
Resumo:
Cholangiocarcinoma is the second most common malignant tumor of the liver. We analyzed, immunohistochemically, the significance of cell cycle- and apoptosis-related markers in 128 cholangiocarcinomas (42 intrahepatic, 70 extrahepatic, and 16 gallbladder carcinomas) combined in a tissue microarray. Follow-up was available for 57 patients (44.5%). In comparison with normal tissue (29 specimens), cholangiocarcinomas expressed significantly more frequently p53, bcl-2, bax, and COX-2 (P.05 <). Intrahepatic tumors were significantly more frequently bcl-2+ and p16+, whereas extrahepatic tumors were more often p53+ (P < .05). Loss of p16 expression was associated with reduced survival of patients. Our data show that p53, bcl-2, bax, and COX-2 have an important role in the pathogenesis of cholangiocarcinomas. The differential expression of p16, bcl-2, and p53 between intrahepatic and extrahepatic tumors demonstrates that there are location-related differences in the phenotype and the genetic profiles of these tumors. Moreover, p16 was identified as an important prognostic marker in cholangiocarcinomas.
Resumo:
BACKGROUND: Diagnosis and prognosis in breast cancer are mainly based on histology and immunohistochemistry of formalin-fixed, paraffin-embedded (FFPE) material. Recently, gene expression analysis was shown to elucidate the biological variance between tumors and molecular markers were identified that led to new classification systems that provided better prognostic and predictive parameters. Archived FFPE samples represent an ideal source of tissue for translational research, as millions of tissue blocks exist from routine diagnostics and from clinical studies. These should be exploited to provide clinicians with more accurate prognostic and predictive information. Unfortunately, RNA derived from FFPE material is partially degraded and chemically modified and reliable gene expression measurement has only become successful after implementing novel and optimized procedures for RNA isolation, demodification and detection. METHODS: In this study we used tissue cylinders as known from the construction of tissue microarrays. RNA was isolated with a robust protocol recently developed for RNA derived from FFPE material. Gene expression was measured by quantitative reverse transcription PCR. RESULTS: Sixteen tissue blocks from 7 patients diagnosed with multiple histological subtypes of breast cancer were available for this study. After verification of appropriate localization, sufficient RNA yield and quality, 30 tissue cores were available for gene expression measurement on TaqMan(R) Low Density Arrays (16 invasive ductal carcinoma (IDC), 8 ductal carcinoma in situ (DCIS) and 6 normal tissue), and 14 tissue cores were lost. Gene expression values were used to calculate scores representing the proliferation status (PRO), the estrogen receptor status and the HER2 status. The PRO scores measured from entire sections were similar to PRO scores determined from IDC tissue cores. Scores determined from normal tissue cores consistently revealed lower PRO scores than cores derived from IDC or DCIS of the same block or from different blocks of the same patient. CONCLUSION: We have developed optimized protocols for RNA isolation from histologically distinct areas. RNA prepared from FFPE tissue cores is suitable for gene expression measurement by quantitative PCR. Distinct molecular scores could be determined from different cores of the same tumor specimen.