995 resultados para nonlinear identification
Resumo:
The problem of identification of a nonlinear dynamic system is considered. A two-layer neural network is used for the solution of the problem. Systems disturbed with unmeasurable noise are considered, although it is known that the disturbance is a random piecewise polynomial process. Absorption polynomials and nonquadratic loss functions are used to reduce the effect of this disturbance on the estimates of the optimal memory of the neural-network model.
Resumo:
Two approaches are presented to calculate the weights for a Dynamic Recurrent Neural Network (DRNN) in order to identify the input-output dynamics of a class of nonlinear systems. The number of states of the identified network is constrained to be the same as the number of states of the plant.
Resumo:
In this paper an alternative method based on artificial neural networks is presented to determine harmonic components in the load current of a single-phase electric power system with nonlinear loads, whose parameters can vary so much in reason of the loads characteristic behaviors as because of the human intervention. The first six components in the load current are determined using the information contained in the time-varying waveforms. The effectiveness of this method is verified by using it in a single-phase active power filter with selective compensation of the current drained by an AC controller. The proposed method is compared with the fast Fourier transform.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Ball and Beam system is a common didactical experiment in control laboratories that can be used to illustrate many different closed-loop control techniques. The plant itself is subjected to many nonlinear effects, which the most common comes from the relative motion between the ball and the beam. The modeling process normally uses the lagrangean formulation. However, many other nonlinear effects, such as non-viscous friction, beam flexibility, ball slip, actuator elasticity, collisions at the end of the beam, to name a few, are present. Besides that, the system is naturally unstable. In this work, we analyze a subset of these characteristics, in which the ball rolls with slipping and the friction force between the ball and the beam is non-viscous (Coulomb friction). Also, we consider collisions at the ends of the beam, the actuator consists of a (rubber made) belt attached at the free ends of the beam and connected to a DC motor. The model becomes, with those nonlinearities, a differential inclusion system. The elastic coefficients of the belt are experimentally identified, as well as the collision coefficients. The nonlinear behavior of the system is studied and a control strategy is proposed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present thesis focuses on the problem of robust output regulation for minimum phase nonlinear systems by means of identification techniques. Given a controlled plant and an exosystem (an autonomous system that generates eventual references or disturbances), the control goal is to design a proper regulator able to process the only measure available, i.e the error/output variable, in order to make it asymptotically vanishing. In this context, such a regulator can be designed following the well known “internal model principle” that states how it is possible to achieve the regulation objective by embedding a replica of the exosystem model in the controller structure. The main problem shows up when the exosystem model is affected by parametric or structural uncertainties, in this case, it is not possible to reproduce the exact behavior of the exogenous system in the regulator and then, it is not possible to achieve the control goal. In this work, the idea is to find a solution to the problem trying to develop a general framework in which coexist both a standard regulator and an estimator able to guarantee (when possible) the best estimate of all uncertainties present in the exosystem in order to give “robustness” to the overall control loop.
Resumo:
MLS-based identification of nonlinear systems is largely affected by deviations in the excitation signal amenable to the combined effect of DC-offset and an arbitrary gain. These induce orthogonality loss in the MLS filter bank output, thus invalidating the underlying identification construction. In this paper we present a correction algorithm to derive the corrected Volterra kernels from the biased estimations provided by the standard MLS-based procedure.
Resumo:
This thesis is concerned with the measurement of the characteristics of nonlinear systems by crosscorrelation, using pseudorandom input signals based on m sequences. The systems are characterised by Volterra series, and analytical expressions relating the rth order Volterra kernel to r-dimensional crosscorrelation measurements are derived. It is shown that the two-dimensional crosscorrelation measurements are related to the corresponding second order kernel values by a set of equations which may be structured into a number of independent subsets. The m sequence properties determine how the maximum order of the subsets for off-diagonal values is related to the upper bound of the arguments for nonzero kernel values. The upper bound of the arguments is used as a performance index, and the performance of antisymmetric pseudorandom binary, ternary and quinary signals is investigated. The performance indices obtained above are small in relation to the periods of the corresponding signals. To achieve higher performance with ternary signals, a method is proposed for combining the estimates of the second order kernel values so that the effects of some of the undesirable nonzero values in the fourth order autocorrelation function of the input signal are removed. The identification of the dynamics of two-input, single-output systems with multiplicative nonlinearity is investigated. It is shown that the characteristics of such a system may be determined by crosscorrelation experiments using phase-shifted versions of a common signal as inputs. The effects of nonlinearities on the estimates of system weighting functions obtained by crosscorrelation are also investigated. Results obtained by correlation testing of an industrial process are presented, and the differences between theoretical and experimental results discussed for this case;
Resumo:
The problem of separating structured information representing phenomena of differing natures is considered. A structure is assumed to be independent of the others if can be represented in a complementary subspace. When the concomitant subspaces are well separated the problem is readily solvable by a linear technique. Otherwise, the linear approach fails to correctly discriminate the required information. Hence, a non-extensive approach is proposed. The resulting nonlinear technique is shown to be suitable for dealing with cases that cannot be tackled by the linear one.
Resumo:
We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.
Resumo:
In this contribution, a system identification procedure of a two-input Wiener model suitable for the analysis of the disturbance behavior of integrated nonlinear circuits is presented. The identified block model is comprised of two linear dynamic and one static nonlinear block, which are determined using an parameterized approach. In order to characterize the linear blocks, an correlation analysis using a white noise input in combination with a model reduction scheme is adopted. After having characterized the linear blocks, from the output spectrum under single tone excitation at each input a linear set of equations will be set up, whose solution gives the coefficients of the nonlinear block. By this data based black box approach, the distortion behavior of a nonlinear circuit under the influence of an interfering signal at an arbitrary input port can be determined. Such an interfering signal can be, for example, an electromagnetic interference signal which conductively couples into the port of consideration. © 2011 Author(s).
Resumo:
Aims. In an earlier paper we introduced a new method for determining asteroid families where families were identified in the proper frequency domain (n, g, g + s) ( where n is the mean-motion, and g and s are the secular frequencies of the longitude of pericenter and nodes, respectively), rather than in the proper element domain (a, e, sin(i)) (semi-major axis, eccentricity, and inclination). Here we improve our techniques for reliably identifying members of families that interact with nonlinear secular resonances of argument other than g or g + s and for asteroids near or in mean-motion resonant configurations. Methods. We introduce several new distance metrics in the frequency space optimal for determining the diffusion in secular resonances of argument 2g - s, 3g - s, g - s, s, and 2s. We also regularize the dependence of the g frequency as a function of the n frequency (Vesta family) or of the eccentricity e (Hansa family). Results. Our new approaches allow us to recognize as family members objects that were lost with previous methods, while keeping the advantages of the Carruba & Michtchenko (2007, A& A, 475, 1145) approach. More important, an analysis in the frequency domain permits a deeper understanding of the dynamical evolution of asteroid families not always obtainable with an analysis in the proper element domain.