961 resultados para non-linearity
Resumo:
This paper investigates the use of time-frequency techniques to assist in the estimation of power system modes which are resolvable by a Digital Fourier Transform (DFT). The limitations of linear estimation techniques in the presence of large disturbances which excite system non-linearities, particularly the swing equation non-linearity are shown. Where a nonlinearity manifests itself as time varying modal frequencies the Wigner-Ville Distribution (WVD) is used to describe the variation in modal frequencies and construct a window over which standard linear estimation techniques can be used. The error obtained even in the presence of multiple resolvable modes is better than 2%.
Resumo:
This paper presents a higher-order beam-column formulation that can capture the geometrically non-linear behaviour of steel framed structures which contain a multiplicity of slender members. Despite advances in computational frame software, analyses of large frames can still be problematic from a numerical standpoint and so the intent of the paper is to fulfil a need for versatile, reliable and efficient non-linear analysis of general steel framed structures with very many members. Following a comprehensive review of numerical frame analysis techniques, a fourth-order element is derived and implemented in an updated Lagrangian formulation, and it is able to predict flexural buckling, snap-through buckling and large displacement post-buckling behaviour of typical structures whose responses have been reported by independent researchers. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. The higher-order element forms a basis for augmenting the geometrically non-linear approach with material non-linearity through the refined plastic hinge methodology described in the companion paper.
Resumo:
In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation was presented to handle geometric non-linearities. The formulation of the present paper extends this to include material non-linearity by proposing a refined plastic hinge approach to analyse large steel framed structures with many members, for which contemporary algorithms based on the plastic zone approach can be problematic computationally. This concept is an advancement of conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual yielding, being recognized as distributed plasticity across the element section, a condition of full plasticity, as well as including strain hardening. It is founded on interaction yield surfaces specified analytically in terms of force resultants, and achieves accurate and rapid convergence for large frames for which geometric and material non-linearity are significant. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. In addition to the numerical efficiency, the present versatile approach is able to capture different kinds of material and geometric non-linearities on general applications of steel structures, and thereby it offers an efficacious and accurate means of assessing non-linear behaviour of the structures for engineering practice.
Resumo:
This thesis is a study in narratology that examines the pre-theoretical ideas that underlie the study of narrative and time. The thesis explores how the lemniscate can be transported from geometry to narrative in order to structure a non-linear story that breaks the rules of causality and chronology by coupling physical movement through space with the backward pull of memory. The findings offer new possibilities for understanding the nexus between shape and story and for recording non-linear narratives that are marked by simultaneity, counterpoint, and reversal.
Resumo:
Non-linear natural vibration characteristics and the dynamic response of hingeless and fully articulated rotors of rectangular cross-section are studied by using the finite element method. In the formulation of response problems, the global variables are augmented with appropriate additional variables, facilitating direct determination of sub-harmonic response. Numerical results are given showing the effect of the geometric non-linearity on the first three natural frequencies. Response analysis of typical rotors indicates a possibility of substantial sub-harmonic response especially in the fully articulated rotors widely adopted in helicopters.
Resumo:
Using polynomial regression and response surface analysis to examine the non-linearity between variables, this study demonstrates that better analytical nuances are required to investigate the relationships between constructs when the underlying theories suggest non-linearity. By utilising the Theory of Planned Behaviour (TPB), Ettlie’s adoption stages as well as employing data gathered from 162 owners of Small and Medium-sized Enterprises (SMEs), our findings reveal that subjective norms and attitude have differing influences upon behavioural intention in both the evaluation and trial stages of the adoption.
Resumo:
In this paper the response of a gyrostabilized platform subjected to a transient torque has been analyzed by deliberately introducing non-linearity into the command of the servomotor. The resulting third-order non-linear differential equation has been solved by using a transformation technique involving the displacement variable. The condition under which platform oscillations may grow with time or die with time are important from the point of view of platform stabilization. The effect of deliberate addition of non-linearity with a view to achieving the ideal response—that is, to bring the platform back to its equilibrium position with as few oscillations as possible—has been investigated. The conditions under which instability may set in on account of the small transient input and small non-linearity has also been discussed. The analysis is illustrated by means of a numerical example. The results of analysis are compared with numerical solutions obtained on a digital computer.
Resumo:
This paper is concerned with the analysis of the absolute stability of a non-linear autonomous system which consists of a single non-linearity belonging to a particular class, in an otherwise linear feedback loop. It is motivated from the earlier Popovlike frequency-domain criteria using the ' multiplier ' eoncept and involves the construction of ' stability multipliers' with prescribed phase characteristics. A few computer-based methods by which this problem can be solved are indicated and it is shown that this constitutes a stop-by-step procedure for testing the stability properties of a given system.
Resumo:
The problem of decoupling a class of non-linear two degrees of freedom systems is studied. The coupled non-linear differential equations of motion of the system are shown to be equivalent to a pair of uncoupled equations. This equivalence is established through transformation techniques involving the transformation of both the dependent and independent variables. The sufficient conditions on the form of the non-linearity, for the case wherein the transformed equations are linear, are presented. Several particular cases of interest are also illustrated.
Resumo:
The possible equivalence of second-order non-linear systems having quadratic and cubic damping with third-order linear systems is studied in this paper. It is shown that this equivalence can be established through transformation techniques under certain constraints on the form of the non-linearity of the given system.
Resumo:
An analytical study for the static strength of adhesive lap joints is presented. The earlier solutions of Volkersen [i], DeBruyne[2] and others were limited to linear adhesives. The influence of adhesive non-linearity was first considered by Grimes' et al[3] and Dickson et al [4]. Recently Hart-Smith[5] successfully introduced elastic-plastic behaviour of the adhesive. In the present study the problem is formulated for general non-linear adhesive behaviour and an efficient numerical algorithm is written for the solution. Bilinear and trilinear models for the nonlinearity yield closed form analytical solutions.
Resumo:
The positivity of operators in Hilbert spaces is an important concept finding wide application in various branches of Mathematical System Theory. A frequency- domain condition that ensures the positivity of time-varying operators in L2 with a state-space description, is derived in this paper by using certain newly developed inequalities concerning the input-state relation of such operators. As an interesting application of these results, an L2 stability criterion for time-varying feedback systems consisting of a finite-sector non-linearity is also developed.
Resumo:
First, the non-linear response of a gyrostabilized platform to a small constant input torque is analyzed in respect to the effect of the time delay (inherent or deliberately introduced) in the correction torque supplied by the servomotor, which itself may be non-linear to a certain extent. The equation of motion of the platform system is a third order nonlinear non-homogeneous differential equation. An approximate analytical method of solution of this equation is utilized. The value of the delay at which the platform response becomes unstable has been calculated by using this approximate analytical method. The procedure is illustrated by means of a numerical example. Second, the non-linear response of the platform to a random input has been obtained. The effects of several types of non-linearity on reducing the level of the mean square response have been investigated, by applying the technique of equivalent linearization and solving the resulting integral equations by using laguerre or Gaussian integration techniques. The mean square responses to white noise and band limited white noise, for various values of the non-linear parameter and for different types of non-linearity function, have been obtained. For positive values of the non-linear parameter the levels of the non-linear mean square responses to both white noise and band-limited white noise are low as compared to the linear mean square response. For negative values of the non-linear parameter the level of the non-linear mean square response at first increases slowly with increasing values of the non-linear parameter and then suddenly jumps to a high level, at a certain value of the non-linearity parameter.
Resumo:
The transient response spectrum of a cubic spring mass system subjected to a step function input is obtained. An approximate method is adopted where non-linear restoring force characteristic is replaced by two linear segments, so that the mean square error between them is a minimum. The effect of viscous damping on the peak response is also discussed for various values of the damping constant and the non-linearity restoring force parameter.
Resumo:
It is shown that a sufficient condition for the asymptotic stability-in-the-large of an autonomous system containing a linear part with transfer function G(jω) and a non-linearity belonging to a class of power-law non-linearities with slope restriction [0, K] in cascade in a negative feedback loop is ReZ(jω)[G(jω) + 1 K] ≥ 0 for all ω where the multiplier is given by, Z(jω) = 1 + αjω + Y(jω) - Y(-jω) with a real, y(t) = 0 for t < 0 and ∫ 0 ∞ |y(t)|dt < 1 2c2, c2 being a constant associated with the class of non-linearity. Any allowable multiplier can be converted to the above form and this form leads to lesser restrictions on the parameters in many cases. Criteria for the case of odd monotonic non-linearities and of linear gains are obtained as limiting cases of the criterion developed. A striking feature of the present result is that in the linear case it reduces to the necessary and sufficient conditions corresponding to the Nyquist criterion. An inequality of the type |R(T) - R(- T)| ≤ 2c2R(0) where R(T) is the input-output cross-correlation function of the non-linearity, is used in deriving the results.