978 resultados para nodules
Resumo:
Human schistosomiasis develops extensive and dense fibrosis in portal space, together with congested new blood vessels. This study demonstrates that Calomys callosus infected with Schistosoma mansoni also develops fibrovascular lesions, which are found in intestinal subserosa. Animals were percutaneously infected with 70 cercariae and necropsied at 42, 45, 55, 80, 90 and 160 days after infection. Intestinal sections were stained for brightfield, polarization microscopy, confocal laser scanning, transmission and scanning electron microscopies. Immunohistological analysis was also performed and some nodules were aseptically collected for cell culture. Numerous intestinal nodules, appearing from 55 up to 160 days after infection, were localized at the interface between external muscular layer and intestinal serosa, consisting of fibrovascular tissue forming a shell about central granuloma(s). Intranodular new vessels were derived from the vasculature of the external vascular layer and were positive for laminin, chondroitin-sulfate, smooth muscle alpha-actin and FVIII-RA. Fibroblastic cells and extracellular matrix components (collagens I, III and VI, fibronectin and tenascin) comprised the stroma. Intermixed with the fibroblasts and vessels there were variable number of eosinophils, macrophages and haemorrhagic foci. In conclusion, the nodules constitute an excellent and accessible model to study fibrogenesis and angiogenesis, dependent on S. mansoni eggs. The fibrogenic activity is fibroblastic and not myofibroblastic-dependent. The angiogenesis is so prominent that causes haemorrhagic ascites.
Resumo:
BACKGROUND: Multiple nodules of the scrotum are uncommonly reported. Their origin is controversial. Treatment is always surgical but the best procedure is still to be determined. MATERIALS AND METHODS: Five new cases are reported with description of the histopathological findings and surgical procedure. RESULTS: Nodules of the scrotum were more frequent in patients with dark skin suggesting an ethnic susceptibility. No other predisposing factors were noted. Screening for disturbances of phosphate or calcium balance was negative. The following histopathological findings were observed: non-calcified epidermoid cysts (3 patients), calcified epidermoid cysts (1 patient) and nodular calcifications without epithelial or glandular structures (1 patient). Subtotal excisions of the scrotum wall using tumescent anaesthesia were performed in all patients without any significant complications. Cosmetic results were excellent. No new lesions were observed during the 1-year follow-up period. CONCLUSIONS: Most cases of multiple nodules of the scrotum are due to non-calcified epidermoid cysts. The term scrotal calcinosis is therefore probably abusively used by many authors. Some cases of nodular calcifications may be due to dystrophic calcification of epidermoid cysts, but calcifications may also occur without any visible epithelial or glandular structure. Subtotal excision of the scrotum wall is a safe and effective surgical procedure to treat multiple nodules of the scrotum. Cosmetic results are excellent and recurrences are rare.
Resumo:
The effects of dark-induced stress on the evolution of the soluble metabolites present in senescent soybean (Glycine max L.) nodules were analysed in vitro using (13)C- and (31)P-NMR spectroscopy. Sucrose and trehalose were the predominant soluble storage carbons. During dark-induced stress, a decline in sugars and some key glycolytic metabolites was observed. Whereas 84% of the sucrose disappeared, only one-half of the trehalose was utilised. This decline coincides with the depletion of Gln, Asn, Ala and with an accumulation of ureides, which reflect a huge reduction of the N(2) fixation. Concomitantly, phosphodiesters and compounds like P-choline, a good marker of membrane phospholipids hydrolysis and cell autophagy, accumulated in the nodules. An autophagic process was confirmed by the decrease in cell fatty acid content. In addition, a slight increase in unsaturated fatty acids (oleic and linoleic acids) was observed, probably as a response to peroxidation reactions. Electron microscopy analysis revealed that, despite membranes dismantling, most of the bacteroids seem to be structurally intact. Taken together, our results show that the carbohydrate starvation induced in soybean by dark stress triggers a profound metabolic and structural rearrangement in the infected cells of soybean nodule which is representative of symbiotic cessation.
Resumo:
We have previously characterized an infectious mouse mammary tumor virus [(MMTV(SW)] which induces a strong superantigen response in vivo. Here we describe the isolation and characterization of MMTV(C4) which was derived from milk of mice implanted with hyperplastic alveolar nodules. MMTV(C4) stimulates V beta 2 expressing T cells after local injection in vivo. Comparison with known open reading frame (orf) sequences revealed high homology to Mtv-6, an endogenous virus interacting with V beta 3-expressing T cells. The carboxyl-terminal amino acids were, however, altered. High homology including the carboxyl-terminal orf amino acids were found with MMTV(C3H-K). We show here that MMTV(C3H-K) has lost its superantigen function. Sequence comparisons permitted the characterization of few key amino acids which could be important for T cell receptor interaction and superantigen processing.
Resumo:
Purpose:Coats' disease is a non-hereditary condition characterized by idiopathic retinal telangiectasia, and exudative retinopathy. Although the exudation often spreads from the main areas of telangiectasia, there is a preferential accumulation of exudation in the macular area in Coats' disease. A subfoveal nodule has usually been described in the context of resolution of macular exudates after treatment of peripheral retinal telangiectasis. Nevertheless, a recent reports stressed out an uncommon prominent subfoveal nodule with peripheral exudates as initial presentation of Coats'disease. The purpose of this study was to report the prevalence of this presentation in a cohort of patients. Methods:All consecutive patients with Coats' disease referred to the Jules Gonin Eye Hospital between January 1979 and July 2006 were included. All charts were screened for a clear cut subfoveal circular lesion on fundus photographies at initial presentation. Results:95 patients suffering of Coat's disease were enrolled. 33 out of 95 patients had subtotal or total exudative retinal detachment, which impeded macular examination. 14 out of 62 (22.6%) resting patients presented with a clear cut prominent circular subfoveal lesion at initial presentation. All patients had unilateral disease. Mean age was 5.6 ± 3.5 year old at initial presentation. There were 4 females and 10 males. Pigmentation and size of the nodule were not homogenous. Mean diameter was 1.1 ± 0.5 optic disc diameter. Conclusions:The present study shows that subfoveal nodule is not such a rare primary presentation of Coats' disease in contrast to what it has been previously reported in the literature. Thus the initial finding of prominent subfoveal nodule associated with peripheral retinal findings made the diagnosis of Coats' disease highly likely.Physicians should be aware that a proeminent subfoveal nodule is a common initial presentation of Coats' disease as it can be confused clinically with Retinoblastoma.
Resumo:
Sabkha and deep burial set tings are the most com mon sites where diagenetic anhydrite forms. In a sabkha setting, displacive facies (iso lated nodules, bed ded nodules, enterolithic levels) of early diagenetic or primary anhydrite are generated (Shearman, 1966; Hardie, 1967). These anhydrite facies are commonly foundat the top of shoal ing cycles representing the evolution from subaqueous depositional conditions at the base (carbonates, lutites) to exposure conditions at the top where in ter stitially-grown gypsum/anhydrite de velops ( sabkha cy cles). In a deep burial setting, gypsum transforms to tally to anhydrite with in creas ing temperature and lithostatic pressure (Murray, 1964). Al though this mineral transformation usually preserves the depositional gypsum facies, a significant textural change is in volved in other cases, resulting in replacive anhydrite with a nodular-mosaic or"chicken-wire" fabric (Warren, 2006). In the two settings, how ever, the size of the individual anhydrite nodules is relatively small, rarely reaching some tens of centimetres across. More over, bedding is preserved or little disturbed, al though minor de formation is caused by the displacive sabkha nodules.
Resumo:
Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using (13)C- and (31)P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homospermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells.
Resumo:
The objective of this work was to isolate and characterize rhizobia from nodules of Centrolobium paraense and to evaluate their symbiotic efficiency. Soil samples collected from four sites of the Roraima Cerrado, Brazil, were used to cultivate C. paraense in order to obtain nodules. Isolates (178) were obtained from 334 nodules after cultivation on medium 79. Twenty-five isolates belonging to six morphological groups were authenticated using Vigna unguiculata and they were characterized by 16S rRNA. Isolates identified as Bradyrhizobium were further characterized using rpoB gene sequencing. A greenhouse experiment was carried out with C. paraense to test the 18 authenticated isolates. Approximately 90% of the isolates grew slowly in medium 79. The 16S rRNA analysis showed that 14 authenticated isolates belong to the genus Bradyrhizobium, and rpoB indicated they constitute different groups compared to previously described species. Only four of the 11 fast-growing isolates nodulated V. unguiculata, two of which belong to Rhizobium, and two to Pleomorphomonas, which was not previously reported as a nodulating genus. The Bradyrhizobium isolates ERR 326, ERR 399, and ERR 435 had the highest symbiotic efficiency on C. paraense and showed a contribution similar to the nitrogen treatment. Centrolobium paraense is able to nodulate with different rhizobium species, some of which have not yet been described.
Resumo:
Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using 13C- and 31P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B.japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homospermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells.
Resumo:
The effects of dark-induced stress on the evolution of the soluble metabolites present in senescent soybean (Glycine max L.) nodules were analysed in vitro using C-13- and P-31-NMR spectroscopy. Sucrose and trehalose were the predominant soluble storage carbons. During dark-induced stress, a decline in sugars and some key glycolytic metabolites was observed. Whereas 84% of the sucrose disappeared, only one-half of the trehalose was utilised. This decline coincides with the depletion of Gln, Asn, Ala and with an accumulation of ureides, which reflect a huge reduction of the N-2 fixation. Concomitantly, phosphodiesters and compounds like P-choline, a good marker of membrane phospholipids hydrolysis and cell autophagy, accumulated in the nodules. An autophagic process was confirmed by the decrease in cell fatty acid content. In addition, a slight increase in unsaturated fatty acids (oleic and linoleic acids) was observed, probably as a response to peroxidation reactions. Electron microscopy analysis revealed that, despite membranes dismantling, most of the bacteroids seem to be structurally intact. Taken together, our results show that the carbohydrate starvation induced in soybean by dark stress triggers a profound metabolic and structural rearrangement in the infected cells of soybean nodule which is representative of symbiotic cessation.
Resumo:
OBJECTIVE: To determine the number of punctures in fine-needle aspiration biopsies required for a safe cytological analysis of thyroid nodules. MATERIALS AND METHODS: Cross-sectional study with focus on diagnosis. The study population included 94 patients. RESULTS: The mean age of the patients participating in the study was 52 years (standard-deviation = 13.7) and 90.4% of them were women. Considering each puncture as an independent event, the first puncture has showed conclusive results in 78.7% of cases, the second, in 81.6%, and the third, in 71.8% of cases. With a view to the increasing chance of a conclusive diagnosis at each new puncture, two punctures have showed conclusive results in 89.5% of cases, and three punctures, in 90.6% of cases with at least one conclusive result. CONCLUSION: Two punctures in fine-needle aspiration biopsies of thyroid nodules have lead to diagnosis in 89.5% of cases in the study sample, suggesting that there is no need for multiple punctures to safely obtain the diagnosis of thyroid nodules.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Bacteria have evolved a wide variety of metabolic strategies to cope with varied environments. Some are specialists and only able to survive in restricted environments; others are generalists and able to cope with diverse environmental conditions. Rhizolbia (e.g. Rhizobium, Sinorhizobium, Bradyrhizobium, Mesorhizobium and Azorhizobium species) can survive and compete for nutrients in soil and the plant rhizosphere but can also form a beneficial symbiosis with legumes in a highly specialized plant cell environment. Inside the legume-root nodule, the bacteria (bacteroids) reduce dinitrogen to ammonium, which is secreted to the plant in exchange for a carbon and energy source. A new and challenging aspect of nodule physiology is that nitrogen fixation requires the cycling of amino acids between the bacteroid and plant. This review aims to summarize the metabolic plasticity of rhizobia and the importance of amino acid cycling.
Resumo:
Deletion of both alanine dehydrogenase genes (aldA) in Mesorhizobium loti resulted in the loss of AldA enzyme activity from cultured bacteria and bacteroids but had no effect on the symbiotic performance of Lotus corniculatus plants. Thus, neither indeterminate pea nodules nor determinate L. corniculatus nodules export alanine as the sole nitrogen secretion product.
Resumo:
Alanine dehydrogenase (AldA) is the principal enzyme with which pea bacteroids synthesize alanine de novo. In free-living culture, AMA activity is induced by carboxylic acids (succinate, malate, and pyruvate), although the best inducer is alanine. Measurement of the intracellular concentration of alanine showed that AldA contributes to net alanine synthesis in laboratory cultures. Divergently transcribed from aldA is an AsnC type regulator, aldR. Mutation of aldR prevents induction of AldA activity. Plasmid-borne gusA fusions showed that aldR is required for transcription of both aldA and aldR; hence, AldR is autoregulatory. However, plasmid fusions containing the aldA-aldR intergenic region could apparently titrate out AldR, sometimes resulting in a complete loss of AldA enzyme activity. Therefore, integrated aldR::gusA and aldA::gusA fusions, as well as Northern blotting, were used to confirm the induction of aldA activity. Both aldA and aldR were expressed in the II/III interzone and zone III of pea nodules. Overexpression of aldA in bacteroids did not alter the ability of pea plants to fix nitrogen, as measured by acetylene reduction, but caused a large reduction in the size and dry weight of plants. This suggests that overexpression of aldA impairs the ability of bacteroids to donate fixed nitrogen that the plant can productively assimilate. We propose that the role of AldA may be to balance the alanine level for optimal functioning of bacteroid metabolism rather than to synthesize alanine as the sole product of N-2 reduction.