103 resultados para nitriding


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beta-type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus and is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapor deposition and chemical vapor deposition are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment. This paper will report the results achieved by a 100 W continuous wave (CW) fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using x-ray diffractometry, optical microscopy, three-dimensional surface profile and contact angle measurements, and nanoindentation test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron nitride (BN) nanotubes of different sizes and tubular structures exhibit very different mechanical and chemical properties, as well as different applications. BN nanotubes of different sizes and nanostructures have been produced in different nitriding gases in a milling and annealing process, in which elemental boron powder was first milled in NH3 for 150 h and subsequently annealed at 1,200 °C for 6 h. The influence of nitriding gases was investigated by using N2, NH3, N2–H2 mixture gases. A relatively slow nitriding reaction in NH3 gas leaded to a 2D growth of BN (002) basal planes and the formation of thin BN nanotubes without the help of metal catalysts. Fast nitriding reactions occurred in N2 or N2–H2 mixture gases, catalyzed by metal particles, resulted in 3D crystal growth and the formation of many large cylindrical and bamboo tubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-yield multiwalled boron nitride (BN) nanotubes have been produced using a ball milling-annealing method. The BN nanotubes with a diameter less than 10 nm and a well-crystallized multiwalled structure were formed via an in situ nitriding reaction. The systematic investigation of the formation process at different annealing temperatures and for different times suggested that the formation of the unique multiwalled structure was attributed by a two-dimensional growth of the BN phase and a nonmetal catalytic growth.