471 resultados para neutrino opacities
Resumo:
Tribimaximal leptonic mixing is a mass-independent mixing scheme consistent with the present solar and atmospheric neutrino data. By conveniently decomposing the effective neutrino mass matrix associated to it, we derive generic predictions in terms of the parameters governing the neutrino masses. We extend this phenomenological analysis to other mass-independent mixing schemes which are related to the tribimaximal form by a unitary transformation. We classify models that produce tribimaximal leptonic mixing through the group structure of their family symmetries in order to point out that there is often a direct connection between the group structure and the phenomenological analysis. The type of seesaw mechanism responsible for neutrino masses plays a role here, as it restricts the choices of family representations and affects the viability of leptogenesis. We also present a recipe to generalize a given tribimaximal model to an associated model with a different mass-independent mixing scheme, which preserves the connection between the group structure and phenomenology as in the original model. This procedure is explicitly illustrated by constructing toy models with the transpose tribimaximal, bimaximal, golden ratio, and hexagonal leptonic mixing patterns.
Resumo:
We study neutrino masses and mixing in the context of flavor models with A(4) symmetry, three scalar doublets in the triplet representation, and three lepton families. We show that there is no representation assignment that yields a dimension-5 mass operator consistent with experiment. We then consider a type-I seesaw with three heavy right-handed neutrinos, explaining in detail why it fails, and allowing us to show that agreement with the present neutrino oscillation data can be recovered with the inclusion of dimension-3 heavy neutrino mass terms that break softly the A(4) symmetry.
Resumo:
A detailed analytic and numerical study of baryogenesis through leptogenesis is performed in the framework of the standard model of electroweak interactions extended by the addition of three right-handed neutrinos, leading to the seesaw mechanism. We analyze the connection between GUT-motivated relations for the quark and lepton mass matrices and the possibility of obtaining a viable leptogenesis scenario. In particular, we analyze whether the constraints imposed by SO(10) GUTs can be compatible with all the available solar, atmospheric and reactor neutrino data and, simultaneously, be capable of producing the required baryon asymmetry via the leptogenesis mechanism. It is found that the Just-So(2) and SMA solar solutions lead to a viable leptogenesis even for the simplest SO(10) GUT, while the LMA, LOW and VO solar solutions would require a different hierarchy for the Dirac neutrino masses in order to generate the observed baryon asymmetry. Some implications on CP violation at low energies and on neutrinoless double beta decay are also considered. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We suggest that the weak-basis independent condition det(M-nu) = 0 for the effective neutrino mass matrix can be used in order to remove the ambiguities in the reconstruction of the neutrino mass matrix from input data available from present and future feasible experiments. In this framework, we study the full reconstruction of M-nu with special emphasis on the correlation between the Majorana CP-violating phase and the various mixing angles. The impact of the recent KamLAND results on the effective neutrino mass parameter is also briefly discussed. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Agência Financiadora: Fundação para a Ciência e a Tecnologia (FCT) - PEst-OE/FIS/UI0777/2013; CERN/FP/123580/2011; PTDC/FIS-NUC/0548/2012
Resumo:
In an attempt at explaining the observed neutrino mass-squared differences and leptonic mixing, lepton mass matrices with zero textures have been widely studied. In the weak basis where the charged lepton mass matrix is diagonal, various neutrino mass matrices with two zeros have been shown to be consistent with the current experimental data. Using the canonical and Smith normal form methods, we construct the minimal Abelian symmetry realizations of these phenomenological two-zero neutrino textures. The implementation of these symmetries in the context of the seesaw mechanism for Majorana neutrino masses is also discussed. (C) 2014 The Authors. Published by Elsevier B.V.
Resumo:
A search is presented for a narrow diboson resonances decaying to WW or WZ in the final state where one W boson decays leptonically (to an electron or a muon plus a neutrino) and the other W/Z boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb−1 of pp collisions at s√ = 8 TeV collected by the ATLAS detector at the LHC. No evidence for resonant diboson production is observed, and resonance masses below 700 GeV and 1490 GeV are excluded at 95% confidence level for the spin-2 Randall-Sundrum bulk graviton G∗ with coupling constant of 1.0 and the extended gauge model W′ boson respectively.
Resumo:
Purpose: To describe the clinical, histologic and genetic findings of corneal opacities in the trisomy 8 mosaic syndrome. Methods: 3 children aged 8 years (Patients A), 6 years (Patients B) and 1 month (Patients C) respectively, were referred with corneal opacities for ophthalmologic evaluation. The 2 older patients had been previously diagnosed with trisomy 8 mosaicism, while the third was diagnosed after the ocular examination. Automated lamellar keratoplasty (ALTK) was performed on the most amblyopic eye. Histopathologic analysis with immunohistochemical markers and cytogenetic studies by FISH using haploid probes for chromosome 8 and chromosome 16 (control) were performed on the excised corneal lesion. Results: All patients presented vascularized corneal opacities involving the superficial stroma, and amblyopia with a bilateral involvement in two of them (Patients A and B). Post-operative follow-up (range 6-20 months) was satisfactory, with the graft remaining clear and improved visual acuity, allowing iso-acuity and stereoscopy in the one month old child (Patients C). The clinically observed corneal opacities corresponded histopathologically to the replacement of the normal anterior corneal stroma by a choristomatous loose richly vascularized connective tissue containing mucopolysacharides. Bowman's membrane was absent. There were no adnexal structures. The overlaying epithelium expressed keratin 3 in all three cases. Keratin 19 was found in the suprabasal epithelial cells in one case but was absent in the other cases. There were no expression of keratin 7 and 1 as well as MUC5AC in the epithelial cells. FISH analysis from 100 interphase cells of the affected tissue and normal conjontival probe revealed normal diploid cells. Conclusions: In this series, the corneal opacities associated with trisomy 8 mosaic syndrome share a common clinical, histopathological and genetic features. ALTK should be considered at diagnosis to prevent amblyopia in these children.
Resumo:
Mikheyev-Smirnov-Wolfenstein (MSW) solutions of the solar neutrino problem predict a seasonal dependence of the zenith angle distribution of the event rates, due to the nonzero latitude at the Super-Kamiokande site. We calculate this seasonal dependence and compare it with the expectations in the no-oscillation case as well as just-so scenario, in the light of the latest Super-Kamiokande 708-day data. The seasonal dependence can be sizable in the large mixing angle MSW solution and would be correlated with the day-night effect. This may be used to discriminate between MSW and just-so scenarios and should be taken into account in refined fits of the data.