998 resultados para neurosecretory cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caudal neurosecretory system is an additional neuroendocrine system found in fishes. Great variation has been observed among different groups of fishes, so far its organization is concerned. Much work has been undertaken on the caudal neurosecretory system of elasmobranchs and teleosts. Large size scattered Dahlgren cells in the posterior end of spinal cord, corresponding to last few vertebrae, with long running axon process and a neurohaemal organ the urophysis are the characteristic features of the system. Although thoroughly investigated in fresh water carps, no work is reported in hill-stream fishes. In an attempt to investigate structure and organization of caudal neurosecretory system in hill-stream fishes, present investigation was undertaken in four hill-stream fish of Indian freshwater namely, Barilius bendelensis, Garra gotyla, Schizothorax plagiostomus and Tor tor. The organization of this system in hill-stream fishes was found to be quite different from that observed in fresh water carps. It displays an organization which is more close to the organization of caudal neurosecretory system observed in elasmobranchs. The features are described and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electron microscopical examination has been made of the fine structure and disposition of pancreatic polypeptide immunoreactive cells associated with the egg-forming apparatus in Diclidophora merlangi. The cell bodies are positioned in the parenchyma surrounding the ootype and taper to axon-like processes that extend to the ootype wall. The terminal regions of these processes branch and anastomose and, in places, the swollen endings or varicosities form synaptic appositions with the muscle fibres in the ootype wall. The cells are characterized by an extensive GER-Golgi system that is involved in the assembly and packaging of dense-cored vesicles. The vesicles accumulate in the axons and terminal varicosities, and their contents were found to be immunoreactive with antisera raised to the C-terminal hexapeptide amide of pancreatic polypeptide. It is concluded that the cells are neurosecretory in appearance and that, functionally, their secretions may serve to regulate ootype motility and thereby help co-ordinate egg production in the worm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1) is a modulator of the c-Jun N-terminal kinase (JNK) activity, which has been implicated in pleiotrophic cellular functions including cell differentiation, division, and death. In this study, we described the presence of IB1/JIP-1 in epithelium of the rat prostate as well as in the human prostatic LNCaP cells. We investigated the functional role of IB1/JIP-1 in LNCaP cells exposed to the proapoptotic agent N-(4-hydroxyphenyl)retinamide (4-HPR) which induced a reduction of IB1/JIP-1 content and a concomittant increase in JNK activity. Conversely, IB1/JIP-1 overexpression using a viral gene transfer prevented the JNK activation and the 4-HPR-induced apoptosis was blunted. In prostatic adenocarcinoma cells, the neuroendocrine (NE) phenotype acquisition is associated with tumor progression and androgen independence. During NE transdifferentiation of LNCaP cells, IB1/JIP-1 levels were increased. This regulated expression of IB1/JIP-1 is secondary to a loss of the neuronal transcriptional repressor neuron restrictive silencing factor (NRSF/REST) function which is known to repress IB1/JIP-1. Together, these results indicated that IB1/JIP-1 participates to the neuronal phenotype of the human LNCaP cells and is a regulator of JNK signaling pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medullary catecholamine and hypothalamic neurosecretory oxytocin cells are activated by hypotension, but previous studies have provided uncertain outcomes concerning their ability to respond to a purely hypovolaemic stimulus. In the present study, injections of PEG/water and pentolinium were used to elicit non-hypotensive, isosmotic hypovolaemia and isovolaemic, isosmotic hypotension, respectively, in conscious rats. Animals were sacrificed 2 h after treatment. Immunolabelling for Fos, tyrosine hydroxylase and oxytocin established that these two stimuli activate almost identical populations of catecholamine neurons in the ventrolateral and dorsomedial medulla, and very similar populations of oxytocin cells in the supraoptic and paraventricular nuclei of the hypothalamus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molting or ecdysis is the most fundamentally important process in arthropod life history, because shedding of the exoskeleton is an absolute prerequisite for growth and metamorphosis. Although the hormonal mechanisms driving ecdysis in insects have been studied extensively, nothing is known about these processes in crustaceans. During late premolt and during ecdysis in the crab Carcinus maenas, we observed a precise and reproducible surge in hemolymph hyperglycemic hormone (CHH) levels, which was over 100-fold greater than levels seen in intermolt animals. The source of this hormone surge was not from the eyestalk neurosecretory tissues but from previously undescribed endocrine cells (paraneurons), in defined areas of the foregut and hindgut. During premolt (the only time when CHH is expressed by these tissues), the gut is the largest endocrine tissue in the crab. The CHH surge, which is a result of an unusual, almost complete discharge of the contents of the gut endocrine cell, regulates water and ion uptake during molting, thus allowing the swelling necessary for successful ecdysis and the subsequent increase in size during postmolt. This study defines an endocrine brain/gut axis in the arthropods. We propose that the ionoregulatory process controlled by CHH may be common to arthropods, in that, for insects, a similar mechanism seems to be involved in antidiuresis. It also seems likely that a cascade of very precisely coordinated release of (neuro) hormones controls ecdysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After periods of high-frequency firing, the normal rhythmically active serotonin (5HT)-containing neurosecretory neurons of the lobster ventral nerve cord display a period of suppressed spike generation and reduced synaptic input that we refer to as “autoinhibition.” The duration of this autoinhibition is directly related to the magnitude and duration of the current injection triggering the high-frequency firing. More interesting, however, is that the autoinhibition is inversely related to the initial firing frequency of these cells within their normal range of firing (0.5–3 Hz). This allows more active 5HT neurons to resume firing after shorter durations of inhibition than cells that initially fired at slower rates. Although superfused 5HT inhibits the spontaneous firing of these cells, the persistence of autoinhibition in saline with no added calcium, in cadmium-containing saline, and in lobsters depleted of serotonin suggests that intrinsic membrane properties account for the autoinhibition. A similar autoinhibition is seen in spontaneously active octopamine neurons but is absent from spontaneously active γ-aminobutyric acid cells. Thus, this might be a characteristic feature of amine-containing neurosecretory neurons. The 5HT cells of vertebrate brain nuclei share similarities in firing frequencies, spike shapes, and inhibition by 5HT with the lobster cells that were the focus of this study. However, the mechanism suggested to underlie autoinhibition in vertebrate neurons is that 5HT released from activated or neighboring cells acts back on inhibitory autoreceptors that are found on the dendrites and cell bodies of these neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intermittent electrical footshock induces c-fos expression in parvocellular neurosecretory neurons expressing corticotropin-releasing factor and in other visceromotor cell types of the paraventricular hypothalamic nucleus (PVH). Since catecholaminergic neurons of the nucleus of the solitary tract and ventrolateral medulla make up the dominant loci of footshock-responsive cells that project to the PVH, these were evaluated as candidate afferent mediators of hypothalamic neuroendocrine responses. Rats bearing discrete unilateral transections of this projection system were exposed to a single 30-min footshock session and sacrificed 2 hr later. Despite depletion of the aminergic innervation on the ipsilateral side, shock-induced up-regulation of Fos protein and corticotropin-releasing factor mRNA were comparable in strength and distribution in the PVH on both sides of the brain. This lesion did, however, result in a substantial reduction of Fos expression in medullary aminergic neurons on the ipsilateral side. These results contrast diametrically with those obtained in a systemic cytokine (interleukin 1) challenge paradigm, where similar cuts ablated the Fos response in the ipsilateral PVH but left intact the induction seen in the ipsilateral medulla. We conclude that (i) footshock-induced activation of medullary aminergic neurons is a secondary consequence of stress, mediated via a descending projection transected by our ablation, (ii) stress-induced activation of medullary aminergic neurons is not necessarily predictive of an involvement of these cell groups in driving hypothalamic visceromotor responses to a given stressor, and (iii) despite striking similarities in the complement of hypothalamic effector neurons and their afferents that may be activated by stresses of different types, distinct mechanisms may underlie adaptive hypothalamic responses in each.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurotransmitter release and hormonal secretion are highly regulated processes culminating in the calcium-dependent fusion of secretory vesicles with the plasma membrane. Here, we have identified a role for phosphatidylinositol 3-kinase C2 alpha (PI3K-C2 alpha) and its main catalytic product, PtdIns3P, in regulated exocytosis. In neuroendocrine cells, PI3K-C2 alpha is present on a subpopulation of mature secretory granules. Impairment of PI3K-C2 alpha function specifically inhibits the ATP-dependent priming phase of exocytosis. Overexpression of wild-type PI3K-C2 alpha enhanced secretion, whereas transfection of PC12 cells with a catalytically inactive PI3K-C2 alpha mutant or a 2xFYVE domain sequestering PtdIns3P abolished secretion. Based on these results, we propose that production of PtdIns3P by PI3K-C2 alpha is required for acquisition of fusion competence in neurosecretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection of plant cells by potyviruses induces the formation of cytoplasmic inclusions ranging in size from 200 to 1000 nm. To determine if the ability to form these ordered, insoluble structures is intrinsic to the potyviral cytoplasmic inclusion protein, we have expressed the cytoplasmic inclusion protein from Potato virus Y in tobacco under the control of the chrysanthemum ribulose-1,5-bisphosphate carboxylase small subunit promoter, a highly active, green tissue promoter. No cytoplasmic inclusions were observed in the leaves of transgenic tobacco using transmission electron microscopy, despite being able to clearly visualize these inclusions in Potato virus Y infected tobacco leaves under the same conditions. However, we did observe a wide range of tissue and sub-cellular abnormalities associated with the expression of the Potato virus Y cytoplasmic inclusion protein. These changes included the disruption of normal cell morphology and organization in leaves, mitochondrial and chloroplast internal reorganization, and the formation of atypical lipid accumulations. Despite these significant structural changes, however, transgenic tobacco plants were viable and the results are discussed in the context of potyviral cytoplasmic inclusion protein function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, mesenchymal stem cells (MSCs) from various tissues have been reported, but the yield and differentiation potential of different tissue-derived MSCs is still not clear. This study was undertaken in an attempt to investigate the multilineage stem cell potential of bone and cartilage explant cultures in comparison with bone marrow derived mesenchymal stem cells (BMSCs). The results showed that the surface antigen expression of tissue-derived cells was consistent with that of mesenchymal stem cells, such as lacking the haematopoietic and common leukocyte markers (CD34, CD45) while expressing markers related to adhesion (CD29, CD166) and stem cells (CD90, CD105). The tissue-derived cells were able to differentiate into osteoblast, chondrocyte and adipocyte lineage pathways when stimulated in the appropriate differentiating conditions. However, compared with BMSCs, tissue-derived cells showed less capacity for multilineage differentiation when the level of differentiation was assessed in monolayer culture by analysing the expression of tissue-specific genes by reverse transcription polymerase chain reaction (RT-PCR) and histology. In high density pellet cultures, tissue-derived cells were able to differentiate into chondrocytes, expressing chondrocyte markers such as proteoglycans, type II collagen and aggrecan. Taken together, these results indicate that cells derived from tissue explant cultures reserved certain degree of differentiation properties of MSCs in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction During development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes. Methods In this study, we investigated the differential expression of 84 stem cell–related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation. Results Our results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor β (TGF-β)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration. Conclusions This study has generated an overview of stem cell–related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-β/BMP, and cadherin signalling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insufficient availability of osteogenic cells limits bone regeneration through cell-based therapies. This study investigated the potential of amniotic fluid–derived stem (AFS) cells to synthesize mineralized extracellular matrix within porous medical-grade poly-e-caprolactone (mPCL) scaffolds. The AFS cells were initially differentiated in two-dimensional (2D) culture to determine appropriate osteogenic culture conditions and verify physiologic mineral production by the AFS cells. The AFS cells were then cultured on 3D mPCL scaffolds (6-mm diameter9-mm height) and analyzed for their ability to differentiate to osteoblastic cells in this environment. The amount and distribution of mineralized matrix production was quantified throughout the mPCL scaffold using nondestructive micro computed tomography (microCT) analysis and confirmed through biochemical assays. Sterile microCT scanning provided longitudinal analysis of long-term cultured mPCL constructs to determine the rate and distribution of mineral matrix within the scaffolds. The AFS cells deposited mineralized matrix throughout the mPCL scaffolds and remained viable after 15 weeks of 3D culture. The effect of predifferentiation of the AFS cells on the subsequent bone formation in vivo was determined in a rat subcutaneous model. Cells that were pre-differentiated for 28 days in vitro produced seven times more mineralized matrix when implanted subcutaneously in vivo. This study demonstrated the potential of AFS cells to produce 3D mineralized bioengineered constructs in vitro and in vivo and suggests that AFS cells may be an effective cell source for functional repair of large bone defects