970 resultados para neonatal respiratory distress syndrome
Resumo:
BACKGROUND: Open lung biopsy (OLB) is helpful in the management of patients with acute respiratory distress syndrome (ARDS) of unknown etiology. We determine the impact of surgical lung biopsies performed at the bedside on the management of patients with ARDS. METHODS: We reviewed all consecutive cases of patients with ARDS who underwent a surgical OLB at the bedside in a medical intensive care unit between 1993 and 2005. RESULTS: Biopsies were performed in 19 patients mechanically ventilated for ARDS of unknown etiology despite extensive diagnostic process and empirical therapeutic trials. Among them, 17 (89%) were immunocompromised and 10 patients experienced hematological malignancies. Surgical biopsies were obtained after a median (25%-75%) mechanical ventilation of 5 (2-11) days; mean (+/-SD) Pao(2)/Fio(2) ratio was 119.3 (+/-34.2) mm Hg. Histologic diagnoses were obtained in all cases and were specific in 13 patients (68%), including 9 (47%) not previously suspected. Immediate complications (26%) were local (pneumothorax, minimal bleeding) without general or respiratory consequences. The biopsy resulted in major changes in management in 17 patients (89%). It contributed to a decision to limit care in 12 of 17 patients who died. CONCLUSION: Our data confirm that surgical OLB may have an important impact on the management of patients with ARDS of unknown etiology after extensive diagnostic process. The procedure can be performed at the bedside, is safe, and has a high diagnostic yield leading to major changes in management, including withdrawal of vital support, in the majority of patients.
Resumo:
Residual lung function abnormalities have been investigated in 9 children (4 boys and 5 girls) a mean 2.7 years after surviving severe adult respiratory distress syndrome (ARDS). All patients had been artificially ventilated for an average of 9.4 days with a FiO2 greater than 0.5 for 34 hours and maximal PEEP levels in the range of 8-20 cm H2O. Since the ARDS, 3 children had presented recurrent respiratory symptoms (moderate exertional dyspnea and cough) and 2 had had evidence of fibrosis on chest radiographs. In all patients abnormal lung functions were found, i.e. ventilation inequalities (8), hypoxemia (7), and obstructive (2) and restrictive (1) lung disease. A significant correlation between respirator therapy and residual lung function was found (duration of FiO2 greater than 0.5 in hours and inspiratory plateau pressure during respirator therapy vs. ventilation inequalities and hypoxemia).
Resumo:
Supporting patients with acute respiratory distress syndrome (ARDS), using a protective mechanical ventilation strategy characterized by low tidal volume and limitation of positive end-expiratory pressure (PEEP) is a standard practice in the intensive care unit. However, these strategies can promote lung de-recruitment, leading to the cyclic closing and reopening of collapsed alveoli and small airways. Recruitment maneuvers (RM) can be used to augment other methods, like positive end-expiratory pressure and positioning, to improve aerated lung volume. Clinical practice varies widely, and the optimal method and patient selection for recruitment maneuvers have not been determined, considerable uncertainty remaining regarding the appropriateness of RM. This review aims to discuss recent findings about the available types of RM, and compare the effectiveness, indications and adverse effects among them, as well as their impact on morbidity and mortality in ARDS patients. Recent developments include experimental and clinical evidence that a stepwise extended recruitment maneuver may cause an improvement in aerated lung volume and decrease the biological impact seen with the traditionally used sustained inflation, with less adverse effects. Prone positioning can reduce mortality in severe ARDS patients and may be an useful adjunct to recruitment maneuvers and advanced ventilatory strategies, such noisy ventilation and BIVENT, which have been useful in providing lung recruitment.
Resumo:
Carotid bodies are chemoreceptors sensitive to a fall of partial oxygen pressure in blood (hypoxia). The morphological alterations of these organs in patients with chronic obstructive pulmonary disease (COPD) and in people living at high altitude are well known. However, it is not known whether the histological profile of human carotid bodies is changed in acute clinical conditions such as acute respiratory distress syndrome (ARDS). The objective of the present study was to perform a quantitative analysis of the histology of carotid bodies collected from patients who died of ARDS. A morphometric study of carotid bodies collected during routine autopsies was carried out on three groups: patients that died of non-respiratory diseases (controls, N = 8), patients that presented COPD and died of its complications or associated diseases (N = 7), and patients that died of ARDS (N = 7). Morphometric measurements of the volume fraction of clusters of chief cells were performed in five fields on each slide at 40X magnification. The numerical proportion of the four main histological cell types (light, dark, progenitor and sustentacular cells) was determined analyzing 10 fields on each slide at 400X magnification. The proportion of dark cells was 0.22 in ARDS patients, 0.12 in controls (P<0.001), and 0.08 in the COPD group. The proportion of light cells was 0.33 (ARDS), 0.44 (controls) (P<0.001), and 0.36 (COPD). These findings suggest that chronic and acute hypoxia have different effects on the histology of glomic tissue.
Resumo:
Improving the course and outcome of patients with acute respiratory distress syndrome presents a challenge. By understanding the immune status of a patient, physicians can consider manipulating proinflammatory systems more rationally. In this context, corticosteroids could be a therapeutic tool in the armamentarium against acute respiratory distress syndrome. Corticosteroid therapy has been studied in three situations: prevention in high-risk patients, early treatment with high-dose, short-course therapy, and prolonged therapy in unresolving cases. There are differences between the corticosteroid trials of the past and recent trials: today, treatment starts 2-10 days after disease onset in patients that failed to improve; in the past, the corticosteroid doses employed were 5-140 times higher than those used now. Additionally, in the past treatment consisted of administering one to four doses every 6 h (methylprednisolone, 30 mg/kg) versus prolonging treatment as long as necessary in the new trials (2 mg kg-1 day-1 every 6 h). The variable response to corticosteroid treatment could be attributed to the heterogeneous biochemical and molecular mechanisms activated in response to different initial insults. Numerous factors need to be taken into account when corticosteroids are used to treat acute respiratory distress syndrome: the specificity of inhibition, the duration and degree of inhibition, and the timing of inhibition. The major continuing problem is when to administer corticosteroids and how to monitor their use. The inflammatory mechanisms are continuous and cyclic, sometimes causing deterioration or improvement of lung function. This article reviews the mechanisms of action of corticosteroids and the results of experimental and clinical studies regarding the use of corticosteroids in acute respiratory distress syndrome.
Resumo:
Polymorphisms and mutations in the surfactant protein B (SP-B) gene have been associated with the pathogenesis of respiratory distress syndrome (RDS). The objective of the present study was to compare the frequencies of SP-B gene polymorphisms between preterm babies with RDS and healthy term newborns. We studied 50 preterm babies with RDS (inclusion criteria - newborns with RDS and gestational age between 28 and 33 weeks and 6 days), and 100 healthy term newborns. Four SP-B gene polymorphisms were analyzed: A/C at nucleotide -18, C/T at nucleotide 1580, A/G at nucleotide 9306, and G/C at nucleotide 8714, by PCR amplification of genomic DNA and genotyping by cRFLP. The healthy newborns comprised 42 female and 58 male neonates; 39 were white and 61 non-white. The RDS group comprised 21 female and 29 male preterm neonates; 28 were white and 22 non-white. Weight ranged from 640 to 2080 g (mean: 1273 g); mean gestational age was 31 weeks and 2 days (range: 28-33 weeks and 6 days). When white children were analyzed separately, a statistically significant difference in the G/C polymorphism at 8714 was observed between groups (P = 0.028). All other genotype frequencies were similar for both groups when sex and race were analyzed together. Analysis of the SP-B polymorphism G/C at nucleotide 8714 showed that among white neonates the GG genotype was found only in the RDS group at a frequency of 17% and the GC genotype was more frequently found in healthy term newborns. These data demonstrate an association of GG genotype with RDS.
Resumo:
The use of positive end-expiratory pressure (PEEP) or lung recruitment maneuvers (RM) to improve oxygenation in acute respiratory distress syndrome (ARDS) is used but it may reduce cardiac output (CO). Intermittent PEEP may avoid these complications. Our objective was to determine if variable PEEP compared with constant PEEP is capable of maintaining arterial oxygenation and minimizing hemodynamic alterations with or without RM. Eighteen dogs with ARDS induced by oleic acid were randomized into three equal groups: group 1, low variable PEEP; group 2, high variable PEEP, and group 3, RM + high variable PEEP. All groups were submitted to constant PEEP, followed by variable PEEP (PEEP was increased from 5 to 10 cmH2O in group 1, and from 5 to 18 cmH2O in the other two groups). PaO2 was higher in group 3 (356.2 ± 65.4 mmHg) than in group 1 (92.7 ± 29.7 mmHg) and group 2 (228.5 ± 72.4 mmHg), P < 0.05. PaO2 was maintained during variable PEEP except in group 2 (318.5 ± 82.9 at constant PEEP to 228.5 ± 72.4 at variable PEEP). There was a reduction in CO in group 3 after RM (3.9 ± 1.1 before to 2.7 ± 0.5 L·min-1·(m2)-1 after; P < 0.05), but there was not any difference between constant and variable PEEP periods (2.7 ± 0.5 and 2.4 ± 0.7 L·min-1·(m2)-1; P > 0.05. Variable PEEP is able to maintain PaO2 when performed in combination with RM in dogs with ARDS. After RM, CO was reduced and there was no relevant difference between the variable and constant PEEP periods.
Resumo:
The etiology of respiratory distress syndrome (RDS) is multifactorial and multigenic. Studies have suggested that polymorphisms and mutations in the surfactant protein B (SP-B) gene are associated with the pathogenesis of RDS. The objectives of this study were to determine and compare the frequencies of SP-B gene polymorphisms in preterm babies with and without RDS. We studied 151 neonates: 79 preterm babies without RDS and 72 preterm newborns with RDS. The following four SP-B gene polymorphisms were analyzed: A/C at -18, C/T at 1580, A/G at 9306, and G/C at nucleotide 8714. The polymorphisms were detected by PCR amplification of genomic DNA and genotyping. The genotypes were determined using PCR-based converted restriction fragment length polymorphisms. The control group consisted of 42 (53%) girls and 37 (47%) boys. Weight ranged from 1170 to 3260 g and mean gestational age (GA) was 33.9 weeks (range: 29 to 35 weeks and 6 days). The RDS group consisted of 31 (43%) girls and 41 (57%) boys. Weight ranged from 614 to 2410 g and mean GA was 32 weeks (range: 26 to 35 weeks). The logistic regression model showed that GA was the variable that most contributed to the occurrence of RDS. The AG genotype of the A/G polymorphism at position 9306 of the SP-B gene was a protective factor in this population (OR = 0.1681; 95%CI = 0.0426-0.6629). We did not detect differences in the frequencies of the other polymorphisms between the two groups of newborns.
Resumo:
Our aims were to describe the prevalence of pulmonary hypertension in patients with acute respiratory distress syndrome (ARDS), to characterize their hemodynamic cardiopulmonary profiles, and to correlate these parameters with outcome. All consecutive patients over 16 years of age who were in the intensive care unit with a diagnosis of ARDS and an in situ pulmonary artery catheter for hemodynamic monitoring were studied. Pulmonary hypertension was diagnosed when the mean pulmonary artery pressure was >25 mmHg at rest with a pulmonary artery occlusion pressure or left atrial pressure <15 mmHg. During the study period, 30 of 402 critically ill patients (7.46%) who were admitted to the ICU fulfilled the criteria for ARDS. Of the 30 patients with ARDS, 14 met the criteria for pulmonary hypertension, a prevalence of 46.6% (95% CI; 28-66%). The most common cause of ARDS was pneumonia (56.3%). The overall mortality was 36.6% and was similar in patients with and without pulmonary hypertension. Differences in patients' hemodynamic profiles were influenced by the presence of pulmonary hypertension. The levels of positive end-expiratory pressure and peak pressure were higher in patients with pulmonary hypertension, and the PaCO2 was higher in those who died. The level of airway pressure seemed to influence the onset of pulmonary hypertension. Survival was determined by the severity of organ failure at admission to the intensive care unit.
Resumo:
Background: Acute respiratory distress syndrome (ARDS) is a frequent respiratory disturbance in preterm newborns. Preceding investigations evaluated chronic physiotherapy effects on newborns with different lung diseases; however, no study analyzed acute physiotherapy treatment on premature newborns with ARDS. In this study we aimed to evaluate the acute effects of chest and motor physiotherapy treatment on hemodynamic variables in preterm newborns with ARDS. Methods: We evaluated heart rate (HR), respiratory rate (RR), systolic (SAP), mean (MAP) and diastolic arterial pressure (DAP), temperature and oxygen saturation (SO(2)%) in 44 newborns with ARDS. We compared all variables between six periods in one day: before first physiotherapy treatment vs. after first physiotherapy treatment vs. before second physiotherapy treatment vs. after second physiotherapy treatment vs. before third physiotherapy treatment vs. after third physiotherapy treatment. Variables were measured 2 minutes before and 5 minutes after each physiotherapy session. We applied Anova one way followed by post hoc Bonferroni test. Results: HR (147.5 +/- 9.5 bpm vs. 137.7 +/- 9.3 bpm; p<0.001), RR (45.5 +/- 8.7cpm vs. 41.5 +/- 6.7 cpm; p=0.001), SAP (70.3 +/- 10.4 mmHg vs. 60.1 +/- 7.1 mmHg; p=0.001) and MAP (55.7 +/- 10 mmHg vs. 46 +/- 6.6 mmHg; p=0.001) were significantly reduced after the third physiotherapy treatment compared to before the first session. There were no significant changes regarding temperature, DAP and SO(2) %. Conclusion: Chest and motor physiotherapy acutely improves HR, RR, SAP, MAP and SO(2) % in newborns with ARDS.
Resumo:
In patients with acute respiratory distress syndrome, positive end-expiratory pressure is associated with alveolar recruitment and lung hyperinflation despite the administration of a low tidal volume. The best positive end-expiratory pressure should correspond to the best compromise between recruitment and distension, a condition that coincides with the best respiratory elastance.