996 resultados para navigation support


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global Positioning System (GPS), with its high integrity, continuous availability and reliability, revolutionized the navigation system based on radio ranging. With four or more GPS satellites in view, a GPS receiver can find its location anywhere over the globe with accuracy of few meters. High accuracy - within centimeters, or even millimeters is achievable by correcting the GPS signal with external augmentation system. The use of satellite for critical application like navigation has become a reality through the development of these augmentation systems (like W AAS, SDCM, and EGNOS, etc.) with a primary objective of providing essential integrity information needed for navigation service in their respective regions. Apart from these, many countries have initiated developing space-based regional augmentation systems like GAGAN and IRNSS of India, MSAS and QZSS of Japan, COMPASS of China, etc. In future, these regional systems will operate simultaneously and emerge as a Global Navigation Satellite System or GNSS to support a broad range of activities in the global navigation sector.Among different types of error sources in the GPS precise positioning, the propagation delay due to the atmospheric refraction is a limiting factor on the achievable accuracy using this system. The WADGPS, aimed for accurate positioning over a large area though broadcasts different errors involved in GPS ranging including ionosphere and troposphere errors, due to the large temporal and spatial variations in different atmospheric parameters especially in lower atmosphere (troposphere), the use of these broadcasted tropospheric corrections are not sufficiently accurate. This necessitated the estimation of tropospheric error based on realistic values of tropospheric refractivity. Presently available methodologies for the estimation of tropospheric delay are mostly based on the atmospheric data and GPS measurements from the mid-latitude regions, where the atmospheric conditions are significantly different from that over the tropics. No such attempts were made over the tropics. In a practical approach when the measured atmospheric parameters are not available analytical models evolved using data from mid-latitudes for this purpose alone can be used. The major drawback of these existing models is that it neglects the seasonal variation of the atmospheric parameters at stations near the equator. At tropics the model underestimates the delay in quite a few occasions. In this context, the present study is afirst and major step towards the development of models for tropospheric delay over the Indian region which is a prime requisite for future space based navigation program (GAGAN and IRNSS). Apart from the models based on the measured surface parameters, a region specific model which does not require any measured atmospheric parameter as input, but depends on latitude and day of the year was developed for the tropical region with emphasis on Indian sector.Large variability of atmospheric water vapor content in short spatial and/or temporal scales makes its measurement rather involved and expensive. A local network of GPS receivers is an effective tool for water vapor remote sensing over the land. This recently developed technique proves to be an effective tool for measuring PW. The potential of using GPS to estimate water vapor in the atmosphere at all-weather condition and with high temporal resolution is attempted. This will be useful for retrieving columnar water vapor from ground based GPS data. A good network of GPS could be a major source of water vapor information for Numerical Weather Prediction models and could act as surrogate to the data gap in microwave remote sensing for water vapor over land.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypermedia systems based on the Web for open distance education are becoming increasingly popular as tools for user-driven access learning information. Adaptive hypermedia is a new direction in research within the area of user-adaptive systems, to increase its functionality by making it personalized [Eklu 961. This paper sketches a general agents architecture to include navigational adaptability and user-friendly processes which would guide and accompany the student during hislher learning on the PLAN-G hypermedia system (New Generation Telematics Platform to Support Open and Distance Learning), with the aid of computer networks and specifically WWW technology [Marz 98-1] [Marz 98-2]. The PLAN-G actual prototype is successfully used with some informatics courses (the current version has no agents yet). The propased multi-agent system, contains two different types of adaptive autonomous software agents: Personal Digital Agents {Interface), to interacl directly with the student when necessary; and Information Agents (Intermediaries), to filtrate and discover information to learn and to adapt navigation space to a specific student

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of mobile robots turns out to be interesting in activities where the action of human specialist is difficult or dangerous. Mobile robots are often used for the exploration in areas of difficult access, such as rescue operations and space missions, to avoid human experts exposition to risky situations. Mobile robots are also used in agriculture for planting tasks as well as for keeping the application of pesticides within minimal amounts to mitigate environmental pollution. In this paper we present the development of a system to control the navigation of an autonomous mobile robot through tracks in plantations. Track images are used to control robot direction by pre-processing them to extract image features. Such features are then submitted to a support vector machine and an artificial neural network in order to find out the most appropriate route. A comparison of the two approaches was performed to ascertain the one presenting the best outcome. The overall goal of the project to which this work is connected is to develop a real time robot control system to be embedded into a hardware platform. In this paper we report the software implementation of a support vector machine and of an artificial neural network, which so far presented respectively around 93% and 90% accuracy in predicting the appropriate route. (C) 2013 The Authors. Published by Elsevier B.V. Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results of a simulation using physical objects. This concept integrates the physical dimensions of an entity such as length, width, and weight, with the usual process flow paradigm, recurrent in the discrete event simulation models. Based on a naval logistics system, we applied this technique in an access channel of the largest port of Latin America. This system is composed by vessel movement constrained by the access channel dimensions. Vessel length and width dictates whether it is safe or not to have one or two ships simultaneously. The success delivered by the methodology proposed was an accurate validation of the model, approximately 0.45% of deviation, when compared to real data. Additionally, the model supported the design of new terminals operations for Santos, delivering KPIs such as: canal utilization, queue time, berth utilization, and throughput capability

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work consists of the investigation of the navigation of Pioneer 10 and 11 probes becoming known as the “Pioneer Anomaly”: the trajectories followed by the spacecrafts did not match the ones retrieved with standard navigation software. Mismatching appeared as a linear drift in the Doppler data received by the spacecrafts, which has been ascribed to a constant sunward acceleration of about 8.5×10-10 m/s2. The study presented hereafter tries to find a convincing explanation to this discrepancy. The research is based on the analysis of Doppler tracking data through the ODP (Orbit Determination Program), developed by NASA/JPL. The method can be summarized as: seek for any kind of physics affecting the dynamics of the spacecraft or the propagation of radiometric data, which may have not been properly taken into account previously, and check whether or not these might rule out the anomaly. A major effort has been put to build a thermal model of the spacecrafts for predicting the force due to anisotropic thermal radiation, since this is a model not natively included in the ODP. Tracking data encompassing more than twenty years of Pioneer 10 interplanetary cruise, plus twelve years of Pioneer 11 have been analyzed in light of the results of the thermal model. Different strategies of orbit determination have been implemented, including single arc, multi arc and stochastic filters, and their performance compared. Orbital solutions have been obtained without the needing of any acceleration other than the thermal recoil one indicating it as the responsible for the observed linear drift in the Doppler residuals. As a further support to this we checked that inclusion of additional constant acceleration as does not improve the quality of orbital solutions. All the tests performed lead to the conclusion that no anomalous acceleration is acting on Pioneers spacecrafts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mainstream IDEs generally rely on the static structure of a software project to support browsing and navigation. We propose HeatMaps, a simple but highly configurable technique to enrich the way an IDE displays the static structure of a software system with additional kinds of information. A heatmap highlights software artifacts according to various metric values, such as bright red or pale blue, to indicate their potential degree of interest. We present a prototype system that implements heatmaps, and we describe an initial study that assesses the degree to which different heatmaps effectively guide developers in navigating software.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The IDE used in most Smalltalk dialects such as Pharo, Squeak or Cincom Smalltalk did not evolve significantly over the last years, if not to say decades. For other languages, for instance Java, the available IDEs made tremendous progress as Eclipse or NetBeans illustrate. While the Smalltalk IDE served as an exemplar for many years, other IDEs caught up or even overtook the erstwhile leader in terms of feature-richness, usability, or code navigation facilities. In this paper we first analyze the difficulty of software navigation in the Smalltalk IDE and second illustrate with concrete examples the features we added to the Smalltalk IDE to fill the gap to modern IDEs and to provide novel, improved means to navigate source space. We show that thanks to the agility and dynamics of Smalltalk, we are able to extend and enhance with reasonable effort the Smalltalk IDE to better support software navigation, program comprehension, and software maintenance in general. One such support is the integration of dynamic information into the static source views we are familiar with. Other means include easing the access to static information (for instance by better arranging important packages) or helping developers re-locating artifacts of interest (for example with a categorization system such as smart groups).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While navigation systems for cars are in widespread use, only recently, indoor navigation systems based on smartphone apps became technically feasible. Hence tools in order to plan and evaluate particular designs of information provision are needed. Since tests in real infrastructures are costly and environmental conditions cannot be held constant, one must resort to virtual infrastructures. This paper presents the development of an environment for the support of the design of indoor navigation systems whose center piece consists in a hands-free navigation method using the Microsoft Kinect in the four-sided Definitely Affordable Virtual Environment (DAVE). Navigation controls using the user's gestures and postures as the input to the controls are designed and implemented. The installation of expensive and bulky hardware like treadmills is avoided while still giving the user a good impression of the distance she has traveled in virtual space. An advantage in comparison to approaches using a head mounted display is that the DAVE allows the users to interact with their smartphone. Thus the effects of different indoor navigation systems can be evaluated already in the planning phase using the resulting system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aeronautical charts underlie the representation of aeronautic geographic information that supports pilots in flight. Nevertheless, the charts become complex due to the high density of data and the different kinds of charts that support each phase of flight. These features make difficult using them on board. After conducting a study, with civil Spaniard pilots, that aims to understand and to evaluate their needs related to Geographic Information, it is proposed a solution to implement a platform based on geographic information standards (OGC, ISO) and supported by a distributed Web architecture. This platform facilitates the use, retrieval, updating of information and its exchange among different institutions through private and public users. As a first element to ensure interoperability of information, we suggest an aeronautical metadata profile that sets guidelines and elements for its description. The metadata profile meets the standards set by ICAO, Eurocontrol and ISO. The platform offers three levels of access to data through different types of devices and user profiles. Thus, aeronautical institutions could edit data while pilot is on board accessing digital aeronautical charts through a laptop or Table PC. This paper suggests an alternative and reliable way for distributing aeronautical geoinformation, focusing on specific functions or displaying and querying.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of barometric altimetry is to some extent a limiting factor on safety, predictability and efficiency of aircraft operations, and reduces the potential of the trajectory based operations capabilities. However, geometric altimetry could be used to improve all of these aspects. Nowadays aircraft altitude is estimated by applying the International Standard Atmosphere which differs from real altitude. At different temperatures for an assigned barometric altitude, aerodynamic forces are different and this has a direct relationship with time, fuel consumption and range of the flight. The study explores the feasibility of using sensors providing geometric reference altitude, in particular, to supply capabilities for the optimization of vertical profiles and also, their impact on the vertical Air Traffic Management separation assurance processes. One of the aims of the thesis is to assess if geometric altitude fulfils the aeronautical requirements through existing sensors. Also the thesis will elaborate on the advantages of geometric altitude over the barometric altitude in terms of efficiency for vertical navigation. The evidence that geometric altitude is the best choice to improve the efficiency in vertical profile and aircraft capacity by reducing vertical uncertainties will also be shown. In this paper, an atmospheric study is presented, as well as the impact of temperature deviation from International Standard Atmosphere model is analyzed in order to obtain relationship between geometric and barometric altitude. Furthermore, an aircraft model to study aircraft vertical profile is provided to analyse trajectories based on geometric altitudes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The development of cognitive robots needs a strong “sensorial” support which should allow it to perceive the real world for interacting with it properly. Therefore the development of efficient visual-processing software to be equipped in effective artificial agents is a must. In this project we study and develop a visual-processing software that will work as the “eyes” of a cognitive robot. This software performs a three-dimensional mapping of the robot’s environment, providing it with the essential information required to make proper decisions during its navigation. Due to the complexity of this objective we have adopted the Scrum methodology in order to achieve an agile development process, which has allowed us to correct and improve in a fast way the successive versions of the product. The present project is structured in Sprints, which cover the different stages of the software development based on the requirements imposed by the robot and its real necessities. We have initially explored different commercial devices oriented to the acquisition of the required visual information, adopting the Kinect Sensor camera (Microsoft) as the most suitable option. Later on, we have studied the available software to manage the obtained visual information as well as its integration with the robot’s software, choosing the high-level platform Matlab as the common nexus to join the management of the camera, the management of the robot and the implementation of the behavioral algorithms. During the last stages the software has been developed to include the fundamental functionalities required to process the real environment, such as depth representation, segmentation, and clustering. Finally the software has been optimized to exhibit real-time processing and a suitable performance to fulfill the robot’s requirements during its operation in real situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the numbers are slowly rising, Hispanic students continue to be disproportionately underrepresented in all levels of higher education, including doctoral education. There are many factors that may contribute to the low numbers of Hispanic doctoral students; for Hispanic women, one of these factors may be the perceived conflict between cultural expectations of childrearing and doctoral education. For Hispanic students who hold strong cultural values, this conflict may prevent enrollment in, or result in attrition from, doctoral education. As the number of Hispanic college enrollment increases, we will see more students trying to navigate between the collectivistic value of childrearing and the individualistic value of pursuing higher education. Thus, it is important to understand the needs of these students to aid in recruitment and retention of student-parents in all levels of higher education. This paper explores the barriers and supportive factors for current Hispanic doctoral student-parents. Suggestions are made to increase support which will allow these individuals to successfully complete a doctoral education, while attending to the responsibilities of parenting.