964 resultados para natural scene perception
Resumo:
Desde os descobrimentos pioneiros de Hubel e Wiesel acumulou-se uma vasta literatura descrevendo as respostas neuronais do córtex visual primário (V1) a diferentes estímulos visuais. Estes estímulos consistem principalmente em barras em movimento, pontos ou grades, que são úteis para explorar as respostas dentro do campo receptivo clássico (CRF do inglês classical receptive field) a características básicas dos estímulos visuais como a orientação, direção de movimento, contraste, entre outras. Entretanto, nas últimas duas décadas, tornou-se cada vez mais evidente que a atividade de neurônios em V1 pode ser modulada por estímulos fora do CRF. Desta forma, áreas visuais primárias poderiam estar envolvidas em funções visuais mais complexas como, por exemplo, a separação de um objeto ou figura do seu fundo (segregação figura-fundo) e assume-se que as conexões intrínsecas de longo alcance em V1, assim como as conexões de áreas visuais superiores, estão ativamente envolvidas neste processo. Sua possível função foi inferida a partir da análise das variações das respostas induzidas por um estímulo localizado fora do CRF de neurônios individuais. Mesmo sendo muito provável que estas conexões tenham também um impacto tanto na atividade conjunta de neurônios envolvidos no processamento da figura quanto no potencial de campo, estas questões permanecem pouco estudadas. Visando examinar a modulação do contexto visual nessas atividades, coletamos potenciais de ação e potenciais de campo em paralelo de até 48 eletrodos implantados na área visual primária de gatos anestesiados. Estimulamos com grades compostas e cenas naturais, focando-nos na atividade de neurônios cujo CRF estava situado na figura. Da mesma forma, visando examinar a influência das conexões laterais, o sinal proveniente da área visual isotópica e contralateral foi removido através da desativação reversível por resfriamento. Fizemos isso devido a: i) as conexões laterais intrínsecas não podem ser facilmente manipuladas sem afetar diretamente os sinais que estão sendo medidos, ii) as conexões inter-hemisféricas compartilham as principais características anatômicas com a rede lateral intrínseca e podem ser vistas como uma continuação funcional das mesmas entre os dois hemisférios e iii) o resfriamento desativa as conexões de forma causal e reversível, silenciando temporariamente seu sinal, permitindo conclusões diretas a respeito da sua contribuição. Nossos resultados demonstram que o mecanismo de segmentação figurafundo se reflete nas taxas de disparo de neurônios individuais, assim como na potência do potencial de campo e na relação entre sua fase e os padrões de disparo produzidos pela população. Além disso, as conexões laterais inter-hemisféricas modulam estas variáveis dependendo da estimulação feita fora do CRF. Observamos também uma influência deste circuito lateral na coerência entre potenciais de campo entre eletrodos distantes. Em conclusão, nossos resultados dão suporte à ideia de um mecanismo complexo de segmentação figura-fundo atuando desde as áreas visuais primárias em diferentes escalas de frequência. Esse mecanismo parece envolver grupos de neurônios ativos sincronicamente e dependentes da fase do potencial de campo. Nossos resultados também são compatíveis com a hipótese que conexões laterais de longo alcance também fazem parte deste mecanismo
Resumo:
Póster presentado en SPIE Photonics Europe, Brussels, 16-19 April 2012.
Resumo:
Our eyes never remain still. Even when we stare at a fixed point, small involuntary movements take place in our eyes in an imperceptible manner. Researchers agree on the presence of three main contributions to eye movements when we fix the gaze: microsaccades, drifts and tremor. These small movements carry the image across the retina stimulating the photoreceptors and thus avoiding fading. Nowadays it is commonly accepted that these movements can improve the discrimination performance of the retina. In this paper, several retina models with and without fixational eye movements were implemented by mean of RetinaStudio tool to test the feasibility of these models to be incorporated in future neuroprostheses. For this purpose each retina model has been stimulated with natural scene images in two experiments. Results are discussed from the point of view of a neuroprosthesis development.
Resumo:
The target of no-reference (NR) image quality assessment (IQA) is to establish a computational model to predict the visual quality of an image. The existing prominent method is based on natural scene statistics (NSS). It uses the joint and marginal distributions of wavelet coefficients for IQA. However, this method is only applicable to JPEG2000 compressed images. Since the wavelet transform fails to capture the directional information of images, an improved NSS model is established by contourlets. In this paper, the contourlet transform is utilized to NSS of images, and then the relationship of contourlet coefficients is represented by the joint distribution. The statistics of contourlet coefficients are applicable to indicate variation of image quality. In addition, an image-dependent threshold is adopted to reduce the effect of content to the statistical model. Finally, image quality can be evaluated by combining the extracted features in each subband nonlinearly. Our algorithm is trained and tested on the LIVE database II. Experimental results demonstrate that the proposed algorithm is superior to the conventional NSS model and can be applied to different distortions. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Recent advances in mobile phone cameras have poised them to take over compact hand-held cameras as the consumer’s preferred camera option. Along with advances in the number of pixels, motion blur removal, face-tracking, and noise reduction algorithms have significant roles in the internal processing of the devices. An undesired effect of severe noise reduction is the loss of texture (i.e. low-contrast fine details) of the original scene. Current established methods for resolution measurement fail to accurately portray the texture loss incurred in a camera system. The development of an accurate objective method to identify the texture preservation or texture reproduction capability of a camera device is important in this regard. The ‘Dead Leaves’ target has been used extensively as a method to measure the modulation transfer function (MTF) of cameras that employ highly non-linear noise-reduction methods. This stochastic model consists of a series of overlapping circles with radii r distributed as r−3, and having uniformly distributed gray level, which gives an accurate model of occlusion in a natural setting and hence mimics a natural scene. This target can be used to model the texture transfer through a camera system when a natural scene is captured. In the first part of our study we identify various factors that affect the MTF measured using the ‘Dead Leaves’ chart. These include variations in illumination, distance, exposure time and ISO sensitivity among others. We discuss the main differences of this method with the existing resolution measurement techniques and identify the advantages. In the second part of this study, we propose an improvement to the current texture MTF measurement algorithm. High frequency residual noise in the processed image contains the same frequency content as fine texture detail, and is sometimes reported as such, thereby leading to inaccurate results. A wavelet thresholding based denoising technique is utilized for modeling the noise present in the final captured image. This updated noise model is then used for calculating an accurate texture MTF. We present comparative results for both algorithms under various image capture conditions.
Resumo:
En los Diques de Taras de Cartago reside una población con alto grado de vulnerabilidad a la ocurrencia de lahares provenientes del Río Reventado. En este artículo se analiza la situación del Barrio La Unión ante un eventual lahar, tanto desde el punto de vista de la amenaza, a la que están expuestos, como de la percepción del riesgo que tienen sus habitantes.Palabras clave: Lahar, desastres naturales, percepción del riesgo, diquesAbstract:In Taras Diques, Cartago, the inhabitants are highly vulnerable to mud slides from the Reventado River. This article analyzes the situation of the La Unión Community in an event of a mud slide, from the danger`s point of view they are exposed to as well as how the inhabitants perceive the risk.Keywords: Lahar, natural disasters, perception of the risk, dikes
Resumo:
In the absence of cues for absolute depth measurements as binocular disparity, motion, or defocus, the absolute distance between the observer and a scene cannot be measured. The interpretation of shading, edges and junctions may provide a 3D model of the scene but it will not inform about the actual "size" of the space. One possible source of information for absolute depth estimation is the image size of known objects. However, this is computationally complex due to the difficulty of the object recognition process. Here we propose a source of information for absolute depth estimation that does not rely on specific objects: we introduce a procedure for absolute depth estimation based on the recognition of the whole scene. The shape of the space of the scene and the structures present in the scene are strongly related to the scale of observation. We demonstrate that, by recognizing the properties of the structures present in the image, we can infer the scale of the scene, and therefore its absolute mean depth. We illustrate the interest in computing the mean depth of the scene with application to scene recognition and object detection.
Resumo:
This paper presents large, accurately calibrated and time-synchronised datasets, gathered outdoors in controlled environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. It discusses how the data collection process was designed, the conditions in which these datasets have been gathered, and some possible outcomes of their exploitation, in particular for the evaluation of performance of sensors and perception algorithms for UGVs.
Resumo:
In this paper we present large, accurately calibrated and time-synchronized data sets, gathered outdoors in controlled and variable environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. These include four 2D laser scanners, a radar scanner, a color camera and an infrared camera. It provides a full description of the system used for data collection and the types of environments and conditions in which these data sets have been gathered, which include the presence of airborne dust, smoke and rain.
Resumo:
Semantic perception and object labeling are key requirements for robots interacting with objects on a higher level. Symbolic annotation of objects allows the usage of planning algorithms for object interaction, for instance in a typical fetchand-carry scenario. In current research, perception is usually based on 3D scene reconstruction and geometric model matching, where trained features are matched with a 3D sample point cloud. In this work we propose a semantic perception method which is based on spatio-semantic features. These features are defined in a natural, symbolic way, such as geometry and spatial relation. In contrast to point-based model matching methods, a spatial ontology is used where objects are rather described how they "look like", similar to how a human would described unknown objects to another person. A fuzzy based reasoning approach matches perceivable features with a spatial ontology of the objects. The approach provides a method which is able to deal with senor noise and occlusions. Another advantage is that no training phase is needed in order to learn object features. The use-case of the proposed method is the detection of soil sample containers in an outdoor environment which have to be collected by a mobile robot. The approach is verified using real world experiments.
Resumo:
Scene understanding has been investigated from a mainly visual information point of view. Recently depth has been provided an extra wealth of information, allowing more geometric knowledge to fuse into scene understanding. Yet to form a holistic view, especially in robotic applications, one can create even more data by interacting with the world. In fact humans, when growing up, seem to heavily investigate the world around them by haptic exploration. We show an application of haptic exploration on a humanoid robot in cooperation with a learning method for object segmentation. The actions performed consecutively improve the segmentation of objects in the scene.
Resumo:
Holistic representations of natural scenes is an effective and powerful source of information for semantic classification and analysis of arbitrary images. Recently, the frequency domain has been successfully exploited to holistically encode the content of natural scenes in order to obtain a robust representation for scene classification. In this paper, we present a new approach to naturalness classification of scenes using frequency domain. The proposed method is based on the ordering of the Discrete Fourier Power Spectra. Features extracted from this ordering are shown sufficient to build a robust holistic representation for Natural vs. Artificial scene classification. Experiments show that the proposed frequency domain method matches the accuracy of other state-of-the-art solutions. © 2008 Springer Berlin Heidelberg.
Resumo:
This article develops a neural model of how the visual system processes natural images under variable illumination conditions to generate surface lightness percepts. Previous models have clarified how the brain can compute the relative contrast of images from variably illuminate scenes. How the brain determines an absolute lightness scale that "anchors" percepts of surface lightness to us the full dynamic range of neurons remains an unsolved problem. Lightness anchoring properties include articulation, insulation, configuration, and are effects. The model quantatively simulates these and other lightness data such as discounting the illuminant, the double brilliant illusion, lightness constancy and contrast, Mondrian contrast constancy, and the Craik-O'Brien-Cornsweet illusion. The model also clarifies the functional significance for lightness perception of anatomical and neurophysiological data, including gain control at retinal photoreceptors, and spatioal contrast adaptation at the negative feedback circuit between the inner segment of photoreceptors and interacting horizontal cells. The model retina can hereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A later model cortical processing stages, boundary representations gate the filling-in of surface lightness via long-range horizontal connections. Variants of this filling-in mechanism run 100-1000 times faster than diffusion mechanisms of previous biological filling-in models, and shows how filling-in can occur at realistic speeds. A new anchoring mechanism called the Blurred-Highest-Luminance-As-White (BHLAW) rule helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural images under variable lighting conditions.
Resumo:
This study develops a neuromorphic model of human lightness perception that is inspired by how the mammalian visual system is designed for this function. It is known that biological visual representations can adapt to a billion-fold change in luminance. How such a system determines absolute lightness under varying illumination conditions to generate a consistent interpretation of surface lightness remains an unsolved problem. Such a process, called "anchoring" of lightness, has properties including articulation, insulation, configuration, and area effects. The model quantitatively simulates such psychophysical lightness data, as well as other data such as discounting the illuminant, the double brilliant illusion, and lightness constancy and contrast effects. The model retina embodies gain control at retinal photoreceptors, and spatial contrast adaptation at the negative feedback circuit between mechanisms that model the inner segment of photoreceptors and interacting horizontal cells. The model can thereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A new anchoring mechanism, called the Blurred-Highest-Luminance-As-White (BHLAW) rule, helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural color images under variable lighting conditions, and is compared with the popular RETINEX model.
Resumo:
Natural environments often generate experiences that combine great emotional and moral power- "charged" experiences. Their characteristics are explored through writings that capture them convincingly. They appear to have a perceptual character. Perception of the scene is invested with a sense of something beyond it, and much bigger. It may be God, or immensity in time or space, or the essence of a nation. This encounter is often connected with moral authority. A recurring theme is the sense that environment and the things in it-including the observer-are a self-similar pattern. People are not passive recipients of these experiences. They seek them out. Evoking, the environment in words can often evoke the charged experience too-at least in part. The material suggests tasks for psychologists-most simply, finding systematic ways to describe these experiences. That may help other environmental disciplines, which face difficulty characterising the dimension of response. Theoretically, the material raises questions about the representations generated by perceptual processes. The observation that powerful moral imperatives seem to be given in the act of perceiving is also suggestive for the psychology of morality. Culture certainly plays a part in charged responses, but landscapes have the power to be invested with an emotional and moral charge where other stimuli may not.