115 resultados para nanoribbons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate theoretically resonant tunneling through double-bended graphene nanoribbon (GNR) structures, i.e., armchair-edged GNRs (AGNRs) in between two semi-infinite zigzag GNR leads. Our numerical results demonstrate that the resonant tunneling can be tuned dramatically by the Fermi energy and the length and/or widths of the AGNR for both the metallic and semiconductorlike AGNRs. The structure can also be use to control the valley polarization of the tunneling currents and could be useful for potential application in valleytronics devices. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks is found emanating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple way to synthesize beta-Ga2O3 nanoribbons and tubes by electrospinning is introduced. The diameters of the electrospun fibers range from 150 nm to 2.5 mu m and their lengths reach up to several millimeters. The relationship among precursors, precursor concentrations, and crystal growth of beta-Ga2O3 nanoribbons and tubes are discussed. The structures of beta-Ga2O3 fibers have been investigated by various methods such as thermogravimetric (TG) and differential thermal analysis (DTA), X-ray diffraction, FT-IR, Raman spectra, scanning electron micrograph (SEM), and transmission electron micrograph (TEM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:


We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24 h. However, their uptake was ~ 38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251 but showed little/no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. Cell death in U251 was necrotic, probably due to oxidative degradation of APE-1.

Graphical abstract

We used O-GNR-PEG-DSPE as a reliable, non-toxic vehicle for delivery of APE-1 inhibiting Lucanthone into GBM tumor cell lines. LUC-O-GNR-PEG-DSPE particles showed 60% or more uptake by CMV/U251 and A1-5/CMV/U251 where as the uptake by MCF7 and normal CG4 glial cells was much lower (38% and 29% respectively). Different concentrations of Luc (5–80 μM) loaded onto O-GNR-PEG-DSPE showed lower toxicity in the exposed cells compared to the free drug, due to possible slow release of the drug from this particle, which ensures minimum non-specific release of the drug from the particle once it is injected in vivo.
http://ars.els-cdn.com/content/image/1-s2.0-S1549963414004249-fx1.jpg

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the transport properties (IxV curves and zero bias transmittance) of pristine graphene nanoribbons (GNRs) as well as doped with boron and nitrogen using an approach that combines nonequilibrium Green`s functions and density functional theory (DFT) [NEGF-DFT]. Even for a pristine nanoribbon we verify a spin-filter effect under finite bias voltage when the leads have an antiparallel magnetization. The presence of the impurities at the edges of monohydrogenated zigzag GNRs changes dramatically the charge transport properties inducing a spin-polarized conductance. The IxV curves for these systems show that depending on the bias voltage the spin polarization can be inverted. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1379-1386, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrated for the first time by ab initio density functional calculation and molecular dynamics simulation that C0.5(BN)0.5 armchair single-walled nanotubes (NT) are gapless semiconductors and can be spontaneously formed via the hybrid connection of graphene/BN Nanoribbons (GNR/BNNR) at room temperature. The direct synthesis of armchair C0.5(BN)0.5 via the hybrid connection of GNR/BNNR is predicted to be both thermodynamically and dynamically stable. Such novel armchair C0.5(BN)0.5 NTs possess enhanced conductance as that observed in GNRs. Additionally, the zigzag C0.5(BN)0.5 SWNTs are narrow band gap semiconductors, which may have potential application for light emission. In light of recent experimental progress and the enhanced degree of control in the synthesis of GNRs and BNNR, our results highlight an interesting avenue for synthesizing a novel specific type of C0.5(BN)0.5 nanotube (gapless or narrow direct gap semiconductor), with potentially important applications in BNC-based nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SnO2 nanoribbons have been synthesized by annealing of a milled SnO2 powder, which is able to evaporate efficiently at the temperature as low as 1100 °C due to the metastable structure created by ball milling treatment. When the milled powder was annealed in an assembly of two combustion boats, SnO2 nanoribbons formed on the surface of the milled powder. The nanoribbons tend to grow along the [101] crystallographic direction and their side surfaces are represented by ±(010) and ±(101) facets. The oxygen plays an important role in enhancing their formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This communication describes, for the first time, the growth of SnO2 nanoribbons by a controlled carbothermal reduction process. An analysis of the transmission electron microscopy image revealed that these nanoribbons have a well-defined shape, with a typical width in the range of 70-300 nm. In general, the nanostructured ribbons were more than 100 mum in length. The results reported here support the hypothesis that this ribbon-like nanostructured material grows by a vapor-solid process. This study introduces two hypotheses to explain the SnO2 nanoribbon growth process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical excitations of elongated graphene nanoflakes of finite length are investigated theoretically through quantum chemistry semiempirical approaches. The spectra and the resulting dipole fields are analyzed, accounting in full atomistic details for quantum confinement effects, which are crucial in the nanoscale regime. We find that the optical spectra of these nanostructures are dominated at low energy by excitations with strong intensity, comprised of characteristic coherent combinations of a few single-particle transitions with comparable weight. They give rise to stationary collective oscillations of the photoexcited carrier density extending throughout the flake and to a strong dipole and field enhancement. This behavior is robust with respect to width and length variations, thus ensuring tunability in a large frequency range. The implications for nanoantennas and other nanoplasmonic applications are discussed for realistic geometries.