990 resultados para nanoparticle assembly


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide a comprehensive physical description of the vaporization, self-assembly, agglomeration, and buckling kinetics of sessile nanofluid droplets pinned on a hydrophobic substrate. We have deciphered five distinct regimes of the droplet life cycle. Regimes I-III consists of evaporation-induced preferential agglomeration that leads to the formation of a unique dome-shaped inhomogeneous shell with a stratified varying-density liquid core. Regime IV involves capillary-pressure-initiated shell buckling and stress-induced shell rupture. Regime V marks rupture-induced cavity inception and growth. We demonstrate through scaling arguments that the growth of the cavity (which controls the final morphology or structure) can be described by a universal function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple one-pot method is developed to prepare size-and shape-controlled copper(I) sulfide (Cu2S) nanocrystals by thermolysis of a mixed solution of copper acetylacetonate, dodecanethiol and oleylamine at a relatively high temperature. The crystal structure, chemical composition and morphology of the as-obtained products are characterized by powder x-ray diffraction (PXRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The morphology and size of the Cu2S nanocrystals can be easily controlled by adjusting the reaction parameters. The Cu2S nanocrystals evolve from spherical to disk-like with increasing reaction temperature. The spherical Cu2S nanocrystals have a high tendency to self-assemble into close-packed superlattice structures. The shape of the Cu2S nanodisks changes from cylinder to hexagonal prism with prolonged reaction time, accompanied by the diameter and thickness increasing. More interestingly, the nanodisks are inclined to self-assemble into face-to-face stacking chains with different lengths and orientations. This one-pot approach may extend to synthesis of other metal sulfide nanocrystals with different shapes and sizes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An effective and facile method for the fabrication of a surface-enhanced Raman scattering (SERS)-active film with closely packed gold nanoparticle (AuNP) arrays is proposed by self-assembly of different sizes ( 16, 25, 40 and 70 nm) of AuNPs at a toluene/water interface with ethanol as the inducer. The as-prepared AuNP arrays exhibit efficient Raman scattering enhancement, and the enhancement factors estimated using p-aminothiophenol as a probe molecule range from 10(5) to 10(7).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemiluminescent glucose biosensor was proposed based on gold nanoparticle-catalyzed luminol electrochemiluminescence (ECL). Gold nanoparticles were self-assembled onto silica sol-gel network, and then glucose oxidase was adsorbed on the surface of gold nanoparticles. The surface assembly process and the electrochemistry and ECL behaviors of the biosensor were investigated. The assembled gold nanoparticles could efficiently electrocatalyze luminol ECL ECL intensity of the biosensor depended on scan rate, luminol concentration, and size of gold nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we report a simple approach for controllable synthesis of one-dimensional (ID) gold nanoparticle (AuNP) assemblies in solution. In the presence of divalent metallic ions, poly(acrylic acid)-1-dodecanethiol-stabilized AuNPs (PAA-DDT@AuNPs) are found to form I D assemblies in aqueous solution by an ion-templated chelation process; this causes an easily measurable change in the absorption spectrum of the particles. The assemblies are very stable and remain suspended in solution for more than one month without significant aggregation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, rapid fabrication of Au nanoparticle (Au NP) films has been simply achieved by alternate adsorption of citrate-stabilized Au NPs and poly(diallyldimethylammonium chloride) with the aid of centrifugal force. In contrast to conventional electrostatic assembly, we carried out the assembly process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force can be imposed on Au NPs. Scanning electron microscopy and cyclic voltammetry were employed to characterize the assembly procedure and the thus-prepared thin solid films. Our results demonstrate that centrifugal force can promote the assembly of Au NPs and therefore enable the rapid fabrication of functional Au NP films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the functional nucleic acids studied, adenine-rich nucleic acids have attracted attention due to their critical roles in many biological processes and self-assembly-based nanomaterials, especially deoxyribonucleic acids (abbreviated as poly(dA)). Therefore the ligands binding to poly(dA) might serve as potential therapeutic agents. Coralyne, a kind of planar alkaloid, has been firstly found that it could bind strongly to poly(dA). This work herein reports an approach for visual sensing of the coralyne-poly(dA) interaction. This method was based on the coralyne inducing poly(dA) into the homo-adenine DNA duplex and the difference in electrostatic affinity between single-stranded DNA and double-stranded DNA with gold nanoparticles (GNPs). Furthermore, we applied the recognition process of the interaction between coralyne and poly(dA) into specific coralyne detection with the assistance of certain software (such as Photoshop). A linear response from 0 to 728 nM was obtained for coralyne, and a detection limit of 91 nM was achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A universal metal-molecule-metal sandwich architecture by the self-assembly of Ag nanoparticles (NPs) and Au NPs of various shapes interconnected with 4-aminothiophenol (4-ATP) molecules was presented. These Ag NPs/4-ATP/Au NPs sandwich structures were characterized by surface enhanced Raman scattering (SERS) using an off-surface plasmon resonance condition. Enhancement factors (EF) on the order of 10(8) for 9b(b(2)) vibration mode were observed for the 4-ATP self-assembled monolayers (SAMs) in such sandwich structures. The factors are 2 orders of magnitude larger than that on the monolayer of Au NPs of various shapes under similar condition. More importantly, remarkable increase in the intensity of b(2) vibrational modes, which is characteristic of the charge transfer (CT) behavior between metal NPs and 4-ATP molecules, was observed in these sandwich structures under 1064 nm excitation. The obtained EF on these sandwich structure for 9b(b(2)) is larger than that for 7a vibration mode by a factor of similar to 10(2), demonstrating the importance of the contribution of the CT mechanism and the CT behavior of metal contacts, which play a significant role in metal-molecule-metal nanosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An enzyme responsive nanoparticle system that uses a DNA-gold nanoparticle (AuNP) assembly as the substrate has been developed for the simple, sensitive, and universal monitoring of restriction endonucleases in real time. This new assay takes advantage of the palindromic recognition sequence of the restriction nucleases and the unique optical properties of AuNPs and is simpler than the procedure previously described by by Xu et al. (Angew. Chem. Int. Ed. Engl. 2007, 46, 3468-3470). Because it involves only one type of ssDNA modified AuNPs, this assay can be directed toward most of the endonucleases by simply changing the recognition sequence found within the linker DNA. In addition, the endonuclease activity could be quantitatively analyzed by the value of the reciprocal of hydrolysis half time (t(1/2)(-1). Furthermore, our new design could also be applied to the assay of methyltransferase activity since the methylation of DNA inhibits its cleavage by the corresponding restriction endonuclease, and thus, this new methodology can be easily adapted to high-throughput screening of methyltransferase inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Ru(bpy)(3)(2+)-doped silica nanoparticle-[Ru@Silica] modified indium tin oxide electrode was prepared by simple electrostatic self-assembly technique, and one-electron catalytic oxidation of guanine bases in double-strand and denatured DNA was realized using the electrochemiluminescence detection means.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functionalized multiwalled carbon nanotubes (MWNTs) were selected as cross-linkers to construct three-dimensional (3D) porous nanoparticle/MWNT hybrid nanostructures by "bottom-up'' self-assembly. The resultant 3D hybrid nanostructure was different from that of metal nanoparticle multilayer assemblies prepared by traditional routes using small molecules or polymers as cross-linkers. The rigidity of the MWNTs resulted in only partial coverage of the nanoparticle surfaces between the linkers during the growth of multilayer film, providing more accessible surfaces to allow target molecules to adsorb on to and react with. HRP was used as a simple model to study the porosity of this assembly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorption of polyethyleneimine (PEI)-metal ion complexes onto the surfaces of carbon nanotubes (CNTs) and subsequent reduction of the metal ion leads to the fabrication of one-dimensional CNT/metal nanoparticle (CNT/M NP) heterogeneous nanostructures. Alternating adsorption of PEI-metal ion complexes and CNTs on substrates results in the formation of multilayered CNT films. After exposing the films to NaBH4, three-dimensional CNT composite films embedded with metal nanoparticles (NPs) are obtained. UV-visible spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy are used to characterize the film assembly. The resulting (CNT/M NP)(n) films inherit the properties from both the metal NPs and CNTs that exhibit unique performance in surface-enhanced Raman scattering (SERS) and electrocatalytic activities to the reduction of O-2; as a result, they are more attractive compared to (CNT/polyelectrolyte)(n) and (NP/polyelectrolyte)(n) films because of their multifunctionality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gold nanoparticles were deposited onto 2-mercaptoethylamine (MEA)-assembled planar gold thin film to construct gold nanoparticles modified electrode by virtue of a solution-based self-assembly strategy. Subsequently, 3-mercaptopropionic acid (MPA)-bridged copper hexacyanoferrate (CuHCF) multilayers were constructed on the as-prepared gold nanoparticles modified electrode. The resulted multilayer nanostructures were investigated by electrochemical surface plasmon resonance (EC-SPR) and atomic force microscopy (AFM) with primary emphasis upon the effect of the gold nanoparticles on the MPA/CuHCF multilayers growth and their surface morphology. Compared with the multilayer system on a planar gold electrode, the different electrochemical and optical properties might result from higher curvature effect and extraordinary surface-to-volume ratio characteristic of gold nanoparticles and the nanoparticle-selective growth of CuHCF. A dendrimer-like assembly process was proposed to explain the experiment results. This new motif of multilayer on the gold nanoparticles modified electrode was different from that of on a planar gold electrode, indicating a potential application of EC-SPR technique in the study of nanocomposite materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple method has been developed to assemble gold nanoparticles to generate 1D assemblies by the assistance of silver ions. The lengths of nanoparticle chains can be controlled by adjusting the content of silver ions in the system. The assembly procedure of gold nanoparticles chains requires no template. The gold nanoparticle chains were characterized using TEM and XPS techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two- and three-dimensional Au nanoparticle/[tetrakis(N-methylpyridyl)porphyrinato]cobalt (CoTMPyP) nanostructured materials were prepared by "bottom-up" self-assembly. The electrocatalytic and plasmonic properties of the Au nanoparticle/CoTMPyP self-assembled nanostructured materials (abbreviated as Au/CoTMPyP SANMs) are tunable by controlled self-assembly of the An nanoparticles and CoTMPyP on indium tin oxide (ITO) electrode. The electrocatalytic activity of the Au/CoTMPyP SANMs can be tuned in two ways. One way is that citrate-stabilized An nanoparticles are positioned first on ITO surface with tunable number density, and then positively charged CoTMPyP ions are planted selectively on these gold sites. The other way is that An nanoparticles and CoTMPyP are deposited by virtue of layer-by-layer assembly, which can also tune the amount of the as-deposited electrocatalysts. FE-SEM studies showed that three-dimensional SANMs grow in the lateral expansion mode, and thermal annealing resulted in both surface diffusion of nanoparticles and atomic rearrangement to generate larger gold nanostructures with predominant (I 11) facets.