31 resultados para nanofluid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we have established the evaporation-liquid flow coupling mechanism by which sessile nanofluid droplets on a hydrophobic substrate evaporate and agglomerate to form unique morphological features under controlled external heating. It is well understood that evaporation coupled with internal liquid flow controls particle transport in a spatiotemporal sense. Flow characteristics inside the heated droplet are investigated and found to be driven by the buoyancy effects. Velocity magnitudes are observed to increase by an order at higher temperatures with similar looking flow profiles. The recirculating flow induced particle transport coupled with collision of particles and shear interaction between them leads to the formation of dome shaped viscoelastic shells of different dimensions depending on the surface temperature. These shells undergo sol-gel transition and subsequently undergo buckling instability leading to the formation of daughter cavities. With an increase in the surface temperature, droplets exhibit buckling from multiple sites over a larger sector in the top half of the droplet. Irrespective of the initial nanoparticle concentration and substrate temperature, growth of a daughter cavity (subsequent to buckling) inside the droplet is found to be controlled by the solvent evaporation rate from the droplet periphery and is shown to exhibit a universal trend.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

提出制冷剂气体水合物在纳米流体中快速生成的设想,通过HFC134a气体水合物在纳米铜流体(由0.04%的十二烷基苯磺酸钠(SDBS)水溶液和名义直径为25nm的纳米铜粒子组成)中的生成实验验证了此设想.实验结果表明,与去离子水中HFC134a气体水合物的生成过程相比,纳米铜流体中SDBS是造成HFC134a气体水合物诱导时问明显缩短的主要原因,而纳米铜粒子对诱导时间的影响不大;纳米铜流体中SDBS的乳化作用和纳米铜粒子大比表面积大大促进了HFC134a在水中的溶解;纳米铜粒子的加入明显加强了HFC134a气体水合物生成过程中的传热传质,随着纳米铜粒子数的增加,HFC134a气体水合物生成过程明显缩短.


An idea was presumed that the refrigerant gas hydrate could be formed rapidly in nanofluids, so that subsequent experiments were carried on the HFC134a gas hydrate formation process in the nanofluid comprised of 0. 04% sodium dodecylbenzenesulfonate-6solution(SDBS) and nano-copper particles of 25 nm in nominal diameter. The results indicated that, compared with the formation process of HFC134a hydrate in deionized water, the addition of 0.04 % SDBS resulted in much more reduction of induction time of HFC134a gas hydrate than the addition nano-copper did in the nanofluids. The emulation of SDBS and great specific surface of nano-copper particles greatly improved the solubility of HFC134a in water, and the formation process of HFC134a gas hydrate decreased with the mass fraction of nano-copper in nanofluid due to that the addition of nano-copper enhanced the heat and mass transfer of formation of HFC134a gas hydrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A desmaterialização da economia é um dos caminhos para a promoção do desenvolvimento sustentável na medida em que elimina ou reduz a utilização de recursos naturais, fazendo mais com menos. A intensificação dos processos tecnológicos é uma forma de desmaterializar a economia. Sistemas mais compactos e mais eficientes consomem menos recursos. No caso concreto dos sistemas envolvendo processo de troca de calor, a intensificação resulta na redução da área de permuta e da quantidade de fluido de trabalho, o que para além de outra vantagem que possa apresentar decorrentes da miniaturização, é um contributo inegável para a sustentabilidade da sociedade através do desenvolvimento científico e tecnológico. O desenvolvimento de nanofluidos surge no sentido de dar resposta a estes tipo de desafios da sociedade moderna, contribuindo para a inovação de produtos e sistemas, dando resposta a problemas colocados ao nível das ciências de base. A literatura é unânime na identificação do seu potencial como fluidos de permuta, dada a sua elevada condutividade, no entanto a falta de rigor subjacente às técnicas de preparação dos mesmos, assim como de um conhecimento sistemático das suas propriedades físicas suportado por modelos físico-matemáticos devidamente validados levam a que a operacionalização industrial esteja longe de ser concretizável. Neste trabalho, estudou-se de forma sistemática a condutividade térmica de nanofluidos de base aquosa aditivados com nanotubos de carbono, tendo em vista a identificação dos mecanismos físicos responsáveis pela condução de calor no fluido e o desenvolvimento de um modelo geral que permita com segurança determinar esta propriedade com o rigor requerido ao nível da engenharia. Para o efeito apresentam-se métodos para uma preparação rigorosa e reprodutível deste tipo de nanofluido assim como das metodologias consideradas mais importantes para a aferição da sua estabilidade, assegurando deste modo o rigor da técnica da sua produção. A estabilidade coloidal é estabelecida de forma rigorosa tendo em conta parâmetros quantificáveis como a ausência de aglomeração, a separação de fases e a deterioração da morfologia das nanopartículas. Uma vez assegurado o método de preparação dos nanofluídos, realizou-se uma análise paramétrica conducente a uma base de dados obtidos experimentalmente que inclui a visão central e globalizante da influência relativa dos diferentes fatores de controlo com impacto nas propriedades termofísicas. De entre as propriedades termofísicas, este estudo deu particular ênfase à condutividade térmica, sendo os fatores de controlo selecionados os seguintes: fluido base, temperatura, tamanho da partícula e concentração de nanopartículas. Experimentalmente, verificou-se que de entre os fatores de controlo estudados, os que maior influência detêm sobre a condutividade térmica do nanofluido, são o tamanho e concentração das nanopartículas. Com a segurança conferida por uma base de dados sólida e com o conhecimento acerca da contribuição relativa de cada fator de controlo no processo de transferência de calor, desenvolveu-se e validou-se um modelo físico-matemático com um caracter generalista, que permitirá determinar com segurança a condutividade térmica de nanofluidos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have performed thermal diffusion measurements of nanofluid containing gold and rhodamine 6G dye in various ratios. At certain concentrations, gold is nearly four times more efficient than water in dissipating small temperature fluctuations in a medium, and therefore it will find applications as heat transfer fluids. We have employed dual-beam mode-matched thermal lens technique for the present investigation. It is a sensitive technique in measuring photothermal parameters because of the use of a lowpower, stabilized laser source as the probe. We also present the results of fluorescence measurements of the dye in the nanogold environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxide free stable metallic nanofluids have the potential for various applications such as in thermal management and inkjet printing apart from being a candidate system for fundamental studies. A stable suspension of nickel nanoparticles of ∼5 nm size has been realized by a modified two-step synthesis route. Structural characterization by x-ray diffraction and transmission electron microscopy shows that the nanoparticles are metallic and are phase pure. The nanoparticles exhibited superparamagnetic properties. The magneto-optical transmission properties of the nickel nanofluid (Ni-F) were investigated by linear optical dichroism measurements. The magnetic field dependent light transmission studies exhibited a polarization dependent optical absorption, known as optical dichroism, indicating that the nanoparticles suspended in the fluid are non-interacting and superparamagnetic in nature. The nonlinear optical limiting properties of Ni-F under high input optical fluence were then analyzed by an open aperture z-scan technique. The Ni-F exhibits a saturable absorption at moderate laser intensities while effective two-photon absorption is evident at higher intensities. The Ni-F appears to be a unique material for various optical devices such as field modulated gratings and optical switches which can be controlled by an external magnetic field

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among various nanoparticles, noble metal nanoparticles have attracted considerable attention due to their optical, catalytic and conducting properties. This work has been focused on the development of an innovative method of synthesis for the preparation of metal nanosuspensions of Au, Ag, Cu, in order to achieve stable sols, showing suitable features to allow an industrial scale up of the processes. The research was developed in collaboration with a company interested in the large scale production of the studied nanosuspensions. In order to develop a commercial process, high solid concentration, long time colloidal stability and particle size control, are required. Two synthesis routes, differing by the used solvents, have been implemented: polyol based and water based synthesis. In order to achieve a process intensification the microwave heating has been applied. As a result, colloidal nanosuspensions with suitable dimensions, good optical properties, very high solid content and good stability, have been synthesized by simple and environmental friendly methods. Particularly, due to some interesting results an optimized synthesis process has been patented. Both water and polyol based synthesis, developed in the presence of a reducing agent and of a chelating polymer, allowed to obtain particle size-control and colloidal stability by tuning the different parameters. Furthermore, it has been verified that microwave device, due to its rapid and homogeneous heating, provides some advantages over conventional method. In order to optimize the final suspensions properties, for each synthesis it has been studied the effect of different parameters (temperature, time, precursors concentrations, etc) and throughout a specific optimization action a right control on nucleation and growth processes has been achieved. The achieved nanoparticles were confirmed by XRD analysis to be the desired metal phases, even at the lowest synthesis temperatures. The particles showed a diameter, measured by STEM and dynamic light scattering technique (DLS), ranging from 10 to 60 nm. Surface plasmon resonance (SPR) was monitored by UV-VIS spectroscopy confirming its dependence by nanoparticles size and shape. Moreover the reaction yield has been assessed by ICP analysis performed on the unreacted metal cations. Finally, thermal conductivity and antibacterial activity characterizations of copper and silver sols respectively are now ongoing in order to check their application as nanofluid in heat transfer processes and as antibacterial agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questo lavoro di tesi si è elaborato un quadro di riferimento per l’utilizzo combinato di due metodologie di valutazione di impatti LCA e RA, per tecnologie emergenti. L’originalità dello studio sta nell’aver proposto e anche applicato il quadro di riferimento ad un caso studio, in particolare ad una tecnologia innovativa di refrigerazione, basata su nanofluidi (NF), sviluppata da partner del progetto Europeo Nanohex che hanno collaborato all’elaborazione degli studi soprattutto per quanto riguarda l’inventario dei dati necessari. La complessità dello studio è da ritrovare tanto nella difficile integrazione di due metodologie nate per scopi differenti e strutturate per assolvere a quegli scopi, quanto nel settore di applicazione che seppur in forte espansione ha delle forti lacune di informazioni circa processi di produzione e comportamento delle sostanze. L’applicazione è stata effettuata sulla produzione di nanofluido (NF) di allumina secondo due vie produttive (single-stage e two-stage) per valutare e confrontare gli impatti per la salute umana e l’ambiente. Occorre specificare che il LCA è stato quantitativo ma non ha considerato gli impatti dei NM nelle categorie di tossicità. Per quanto concerne il RA è stato sviluppato uno studio di tipo qualitativo, a causa della problematica di carenza di parametri tossicologici e di esposizione su citata avente come focus la categoria dei lavoratori, pertanto è stata fatta l’assunzione che i rilasci in ambiente durante la fase di produzione sono trascurabili. Per il RA qualitativo è stato utilizzato un SW specifico, lo Stoffenmanger-Nano che rende possibile la prioritizzazione dei rischi associati ad inalazione in ambiente di lavoro. Il quadro di riferimento prevede una procedura articolata in quattro fasi: DEFINIZIONE SISTEMA TECNOLOGICO, RACCOLTA DATI, VALUTAZIONE DEL RISCHIO E QUANTIFICAZIONE DEGLI IMPATTI, INTERPRETAZIONE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dissipation of high heat flux from integrated circuit chips and the maintenance of acceptable junction temperatures in high powered electronics require advanced cooling technologies. One such technology is two-phase cooling in microchannels under confined flow boiling conditions. In macroscale flow boiling bubbles will nucleate on the channel walls, grow, and depart from the surface. In microscale flow boiling bubbles can fill the channel diameter before the liquid drag force has a chance to sweep them off the channel wall. As a confined bubble elongates in a microchannel, it traps thin liquid films between the heated wall and the vapor core that are subject to large temperature gradients. The thin films evaporate rapidly, sometimes faster than the incoming mass flux can replenish bulk fluid in the microchannel. When the local vapor pressure spike exceeds the inlet pressure, it forces the upstream interface to travel back into the inlet plenum and create flow boiling instabilities. Flow boiling instabilities reduce the temperature at which critical heat flux occurs and create channel dryout. Dryout causes high surface temperatures that can destroy the electronic circuits that use two-phase micro heat exchangers for cooling. Flow boiling instability is characterized by periodic oscillation of flow regimes which induce oscillations in fluid temperature, wall temperatures, pressure drop, and mass flux. When nanofluids are used in flow boiling, the nanoparticles become deposited on the heated surface and change its thermal conductivity, roughness, capillarity, wettability, and nucleation site density. It also affects heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. Flow boiling was investigated in this study using degassed, deionized water, and 0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel with a hydraulic diameter of 229 µm for one inlet fluid temperature of 63°C and two constant flow rates of 0.41 ml/min and 0.82 ml/min. The power input was adjusted for two average surface temperatures of 103°C and 119°C at each flow rate. High speed images were taken periodically for water and nanofluid flow boiling after durations of 25, 75, and 125 minutes from the start of flow. The change in regime timing revealed the effect of nanoparticle suspension and deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). Cycle duration and bubble frequencies are reported for different nanofluid flow boiling durations. The addition of nanoparticles was found to stabilize bubble nucleation and growth and limit the recession rate of the upstream and downstream interfaces, mitigating the spreading of dry spots and elongating the thin film regions to increase thin film evaporation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface modification by means of nanostructures is of interest to enhance boiling heat transfer in various applications including the organic Rankine cycle (ORC). With the goal of obtaining rough and dense aluminum oxide (Al2O3) nanofilms, the optimal combination of process parameters for electrophoretic deposition (EPD) based on the uniform design (UD) method is explored in this paper. The detailed procedures for the EPD process and UD method are presented. Four main influencing conditions controlling the EPD process were identified as nanofluid concentration, deposition time, applied voltage and suspension pH. A series of tests were carried out based on the UD experimental design. A regression model and statistical analysis were applied to the results. Sensitivity analyses of the effect of the four main parameters on the roughness and deposited mass of Al2O3 films were also carried out. The results showed that Al2O3 nanofilms were deposited compactly and uniformly on the substrate. Within the range of the experiments, the preferred combination of process parameters was determined to be nanofluid concentration of 2 wt.%, deposition time of 15 min, applied voltage of 23 V and suspension pH of 3, yielding roughness and deposited mass of 520.9 nm and 161.6 × 10− 4 g/cm2, respectively. A verification experiment was carried out at these conditions and gave values of roughness and deposited mass within 8% error of the expected ones as determined from the UD approach. It is concluded that uniform design is useful for the optimization of electrophoretic deposition requiring only 7 tests compared to 49 using the orthogonal design method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood. ^ A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re = 90–600 and phase change material particle concentrations of ϵp ≤ 0.25, as well as extreme conditions of very low Reynolds numbers (Re < 50) and high phase change material particle concentration (ϵp = 50%–70%) slurry flow. By using the two newly-defined parameters, named effectiveness factor ϵeff and performance index PI, respectively, it is found that there exists an optimal relation between the channel design parameters L and D, particle volume fraction ϵp, Reynolds number Re, and the wall heat flux qw. The influence of the particle volume fraction ϵp, particle size dp, and the particle viscosity μ p, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices. ^ To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents an experimental investigation of thermal hydraulic performance of the nanofluid composed by graphene nanoparticles dispersed in a mixture of water and ethylene glycol at a ratio of 70:30% by volume. The tests were carried out under forced convection inside a circular tube with uniform heat flux on the wall for the laminar-turbulent transition regime. The mass flow rate ranged from 40 to 70 g/s corresponding to Reynolds numbers between 3000 and 7500. The heat flux was maintained constant at values of 11, 16 and 21 kW/m², as well as the inlet temperature of 15, 20 and 25°C. Three samples were produced with the nanofluid volumetric concentration of 0.05%, 0.10% and 0.15%. Thermophysical properties were experimentaly measured for all samples that were critically compared and discussed with theoretical models most commonly used in the literature. Initially, experiments with distilled water confirmed the validity of the experimental equipment for the thermo-hydraulic tests. Therefore, nanofluid samples that showed the highest thermal conductivity, corresponding to the volumetric concentrations of 0.15% and 0.10%, were subjected to the tests. The thermal-hydraulic performance for both samples was unsatisfactory. The heat transfer coefficients for convection of nanofluids reduced 21% in average, for the sample with = 0.15% and 26% and for =0.10%. The pressure drop of the samples was higher than the base fluid. Finally, the pressure drop and heat transfer coefficient by convection of both samples were also compared to theoretical models. The models used for pressure drop showed an excellent agreement with experimental results, which is remarkable considering the transitional flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood. A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re=600-900 and phase change material particle concentrations ¡Ü0.25 , as well as extreme conditions of very low Reynolds numbers (Re < 50) and high phase change material particle concentration (0.5-0.7) slurry flow. By using the two newly-defined parameters, named effectiveness factor and performance index, respectively, it is found that there exists an optimal relation between the channel design parameters, particle volume fraction, Reynolds number, and the wall heat flux. The influence of the particle volume fraction, particle size, and the particle viscosity, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices. To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prospective impact of nanomaterials in science and technology has followed an increasing trend due to their unique chemical and physical properties compared to bulk. Significant advances in current technologies in areas such as clean energy production, electronics, medicine, and environment have fuelled major research and development efforts in nanotechnology around the world. This leads to the opportunity to use such nanostructured materials in novel applications and devices. Ceria, zirconia, alumina and titania are some of the major oxides which find vast applications as a nanomaterial on a wider side.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of Reynolds number variation in a vertical double pipe counterflow heat exchanger due to the changes in viscosity can cause the change in flow regime, for instance, when heats up and cools down, it can convert from turbulent to laminar or inversely, that can have significant effect on heat transfer coefficient and pressure drop. Mainly, the range of transition phase has been studied in this study with the investigation of silica nanofluid dispersed in water in three different concentrations. The results have been compared with distilled water sample and showed a remarkable raise in heat transfer coefficient while pressure drop has been increased respectively, as well. Although pumping power has to go up at the same time and it is a drawback, heat transfer efficiency grows for diluted samples. On the other hand, for the most concentrated sample, effect of pressure drop dominates which leads to decline in the overall efficiency.