48 resultados para nandrolone decanoate
Resumo:
This study aimed to evaluate the effects of adding different concentrations of the leaf additives nandrolone decanoate, ascorbic acid, retinol palmitate and retinol acetate on biological parameters of Bombyx mori larvae. The results showed that nandrolone and ascorbic acid, both at 0.5%, provide the best value for the development of the larvae of B. mori, values which do not correspond to significant increases in cocoon and silk production; 1.0% of retinol palmitate show negative effect to larvae development.
Resumo:
O objetivo deste estudo foi avaliar os efeitos e os métodos de aplicação dos aditivos foliares decanoato de nandrolona (esteroide anabolizante) a 0,5%, ácido ascórbico (vitamina C) a 0,5%, palmitato de retinol (vitamina A) a 0,5% e acetato de retinol (vitamina A) a 1,0% em alguns parâmetros biológicos do bicho-da-seda. No experimento do modo de aplicação (pulverização foliar antes do fornecimento, depois do fornecimento e por imersão antes do fornecimento) foram utilizados: decanoato de nandrolona 0,5%; ácido ascórbico 0,5%; e palmitato de retinol 0,5%. No ensaio de desenvolvimento do inseto foram avaliados: duração e viabilidade larval; peso de casulo; taxa de encasulamento; teor líquido de seda; longevidade de adultos; número de ovos por fêmea; e duração do período de subida ao bosque. Para o modo de aplicação determinaram-se: ganho de peso, comprimento, diâmetro do tórax e diâmetro do abdome de lagartas de 5º ínstar, assim como comprimento, diâmetro e peso de glândula sericígena. Os resultados mostraram que, apesar de o ácido ascórbico proporcionar os melhores valores para o desenvolvimento corpóreo das lagartas, este não corresponde a incrementos significativos na produção; o palmitato de retinol não melhora o desenvolvimento das lagartas; o acetato de retinol e o palmitato de retinol prolongam o período larval, sem, no entanto, alterar significativamente os parâmetros de produção; a imersão de folhas antes do fornecimento às lagartas é mais viável para a aplicação dos aditivos.
Resumo:
INTRODUCTION: Anabolic androgenic steroids (AAS) are frequently used by people whose aim to increase muscle mass to obtain a better performance in sports or improve physical appearance. AAS are synthetic derivatives of testosterone, able to promote muscle fibers hypertrophy, increasing intracellular protein synthesis. L-carnitine is a food supplement used to increase energetic production by means of fat acids oxidation. Although there are several works about physiological properties of these drugs, there are few studies about their mutagenic potential. OBJECTIVES: This work evaluated the clastogenicity and genotoxicity of nandrolone decanoate, testosterone decanoate and L-carnitine, in different treatments through the micronucleus test in polychromatic erythrocytes of Wistar rats. METHODS: The animals were submitted to different concentrations and associations of AAS. The positive control received cyclophosphamide 50 mg/kg by intraperitoneal injection and negative control, one ml of saline solution by gavage. The rats were sacrificed after 36 hours of latest application, having the femurs removed and the bone marrow extracted. Material was homogenized and centrifuged. Button cell was pipetted and transferred to slides, which were stained by Giemsa. 1,000 polychromatic erythrocytes were counted per animal, noting the frequency of micronuclei. RESULTS: The Kruskal-Wallis test was performed, with a significance level of 5%, which demonstrated that nandrolone decanoate - three doses of 0,2 mg/kg and 0,6 mg/kg, eight doses of 7,5 mg/kg, L-carnitine - seven doses of 0,4 ml/250 g and 1,5 ml/250 g, testosterone decanoate - 28 doses of 0,075 mg/kg, nandrolone decanoate - eight doses of 7,5 mg/kg associated to L-carnitine and 1 mL and nandrolone decanoate - eight doses of 7,5 mg/kg associated to testosterone decanoate - eight doses of 7,5 mg/kg, showed mutagenic potential. CONCLUSION: The treatments proved to be clastogenic, not being indicated like ergogenic aid.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Measurement of steroid esters in bovine hair samples, using sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS), provides a powerful tool for identifying animals treated illicitly with growth promoters. The successful application of such testing requires appropriate sampling of hair from treated animals. This paper describes the results of hair analysis by LC-MS/MS for two animal studies in which animals were treated with estradiol-3-benzoate and nortestosterone decanoate. The results from the first animal study indicate that animals treated with these anabolic steroids may not always be identified from analysis of hair samples; positive test results occur sporadically and only for some of the treated animals. The results from the second animal study identify conditions attaching to positive hair samples, such as, that concentrations of steroid esters in hair are related to distance of sampling from point of injection and to time post-treatment, that concentrations of steroid esters in hair are related to dose given to the animal but that this relationship may vary over time post-treatment, and that steroid esters may be measured in regrowth hair taken some weeks after treatment. Steroid esters are determined along the length of the hair, confirming that accumulation of steroid esters into hair occurs from various sources, including blood, sweat and sebum. The reported research provides some useful insights into the mechanisms governing the persistence of steroid esters in bovine hair following illicit treatment with growth promoters. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Efficient control of the illegal use of anabolic steroids must both take into account metabolic patterns and associated kinetics of elimination; in this context, an extensive animal experiment involving 24 calves and consisting of three administrations of 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate esters was carried out over 50 days. Urine samples were regularly collected during the experiment from all treated and non-treated calves. For sample preparation, a single step high throughput protocol based on 96-well C-18 SPE was developed and validated according to the European Decision 2002/657/EC requirements. Decision limits (CC alpha) for steroids were below 0.1 mu g L-1, except for 19-norandrosterone (CC alpha = 0.7 mu g L-1) and estrone (CC alpha = 0.3 mu g L-1). Kinetics of elimination of the administered 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate were established by monitoring 17 beta-estradiol, 17 alpha-estradiol, estrone and 17 beta-nandrolone, 17 alpha-nandrolone, 19-noretiocholanolone, 19-norandrostenedione, respectively. All animals demonstrated homogeneous patterns of elimination both from a qualitative (metabolite profile) and quantitative point of view (elimination kinetics in urine). Most abundant metabolites were 17 alpha-estradiol and 17 alpha-nandrolone (> 20 and 2 mg L-1, respectively after 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate administration) whereas 17 beta-estradiol, estrone, 17 beta-nandrolone, 19-noretiocholanolone and 19-norandrostenedione were found as secondary metabolites at concentration values up to the mu g L-1 level. No significant difference was observed between male and female animals. The effect of several consecutive injections on elimination profiles was studied and revealed a tendency toward a decrease in the biotransformation of administered steroid 17 beta form. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Este estudo teve por objetivo analisar as alterações histológicas, histoquímicas e morfométricas das fibras do músculo sóleo de ratos submetidos a um programa de natação, associado ou não à administração do esteróide anabólico decanoato de nandrolona. Foram utilizados 22 ratos Wistar machos, 12 dos quais receberam injeção intramuscular do esteróide (5mg/kg) e 10, óleo mineral (5mg/kg), duas vezes por semana. Os animais foram submetidos a 42 sessões de natação por nove semanas (de segunda a sexta-feira), com aumento progressivo de carga por meio do tempo de natação. Após o sacrifício, o músculo sóleo esquerdo foi retirado, imerso em n-hexana e acondicionado em nitrogênio líquido. Cortes do terço médio desse músculo foram feitos em micrótomo criostato (-20ºC) e corados pela técnica HE e pelo método histoquímico NADH-TR. Os animais submetidos a treinamento físico e a esteróide (TA) ou óleo mineral (TO) apresentaram fibras musculares com maior diâmetro, quando comparados com os animais-controle (NTA e NTO). Não houve diferença significativa entre as medidas das médias dos diâmetros das fibras dos grupos NTA e NTO e entre TA e TO. Nos grupos TA e NTA notou-se acentuado processo de fagocitose, arredondamento e hialinização das fibras musculares. Já nos grupos TA, TO e NTA observou-se perda da atividade enzimática oxidativa. Os resultados sugerem que a natação produz hipertrofia muscular de forma semelhante, tanto no grupo que recebeu esteróide como no que recebeu óleo mineral. No entanto, o grupo que recebeu esteróide apresentou sinais claros de maior degeneração muscular.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Myonecrosis with permanent loss of muscle mass is a relevant local toxic effect following envenomation with Bothrops jararacussu snake venom. Regeneration of adult skeletal muscle involves the activation of satellite cells, a process regulated by myogenic regulatory factors (MRF). MyoD is an MRF involved in both proliferation and differentiation of satellite cells. Androgens are modulators of skeletal muscle, known to increase muscle mass and strength. This study examined the hypothesis that anabolic androgens improve the muscle regeneration process in mice following envenomation by Bothrops jararacussu snake venom. Myonecrosis was induced by venom injection (30 g/50 l in physiological solution) over the extensor digitorum longus (EDL) muscles of mice. Nandrolone (ND) (6 mg/kg, sc) was administered after 12 h, 7 d, and 14 d following venom injection. The histological changes in EDL muscle at 1, 3, 7, and 21 d after muscle injury were analyzed by light microscopy. Cross-sectional areas of fibers were measured. MyoD was evaluated by immunofluorescence technique. Histological examination revealed the presence of a regeneration process in ND-treated animals, characterized by the appearance of some myotubes at 3 d, and numerous myotubes at 7 d from venom injection. Nandrolone treatment reduced the frequency of small fibers at 7 and 21 d after venom administration, and increased the frequency of large fibers at 7 d postinjury. Nandrolone also significantly augmented the expression of MyoD-positive cells at 7 and 21 d after envenomation. These results suggest that ND accelerates muscle regeneration and indicate the involvement of MyoD in this process.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Backgrond: Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion - like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. Methods: In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. Results: The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation.