951 resultados para mutation accumulation
Resumo:
BACKGROUND: Cells deploy quality control mechanisms to remove damaged or misfolded proteins. Recently, we have reported that a mutation (R43W) in the Frank-ter Haar syndrome protein Tks4 resulted in aberrant intracellular localization.
RESULTS: Here we demonstrate that the accumulation of Tks4(R43W) depends on the intact microtubule network. Detergent-insoluble Tks4 mutant colocalizes with the centrosome and its aggregate is encaged by the intermediate filament protein vimentin. Both the microtubule inhibitor nocodazole and the histone deacetylase inhibitor Trichostatin A inhibit markedly the aggresome formation in cells expressing Tks4(R43W). Finally, pretreatment of cells with the proteasome inhibitor MG132 markedly increases the level of aggresomes formed by Tks4(R43W). Furthermore, two additional mutant Tks4 proteins (Tks4(1-48) or Tks4(1-341)) have been investigated. Whereas the shorter Tks4 mutant, Tks4(1-48), shows no expression at all, the longer Tks4 truncation mutant accumulates in the nuclei of the cells.
CONCLUSIONS: Our results suggest that misfolded Frank-ter Haar syndrome protein Tks4(R43W) is transported via the microtubule system to the aggresomes. Lack of expression of Tks4(1-48) or aberrant intracellular expressions of Tks4(R43W) and Tks4(1-341) strongly suggest that these mutations result in dysfunctional proteins which are not capable of operating properly, leading to the development of FTHS.
Resumo:
We present an application of birth-and-death processes on configuration spaces to a generalized mutation4 selection balance model. The model describes the aging of population as a process of accumulation of mu5 tations in a genotype. A rigorous treatment demands that mutations correspond to points in abstract spaces. 6 Our model describes an infinite-population, infinite-sites model in continuum. The dynamical equation which 7 describes the system, is of Kimura-Maruyama type. The problem can be posed in terms of evolution of states 8 (differential equation) or, equivalently, represented in terms of Feynman-Kac formula. The questions of interest 9 are the existence of a solution, its asymptotic behavior, and properties of the limiting state. In the non-epistatic 10 case the problem was posed and solved in [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 11 35(1)]. In our model we consider a topological space X as the space of positions of mutations and the influence of epistatic potentials
Resumo:
Context: Iodide transport defect (ITD) is an autosomal recessive disorder caused by impaired Na(+)/I(-) symporter (NIS)-mediated active iodide accumulation into thyroid follicular cells. Clinical manifestations comprise a variable degree of congenital hypothyroidism and goiter, and low to absent radioiodide uptake, as determined by thyroid scintigraphy. Hereditary molecular defects in NIS have been shown to cause ITD. Objective: Our objective was to perform molecular studies on NIS in a patient with congenital hypothyroidism presenting a clinical ITD phenotype. Design: The genomic DNA encoding NIS was sequenced, and an in vitro functional study of a newly identified NIS mutation was performed. Results: The analysis revealed the presence of an undescribed homozygous C to T transition at nucleotide -54 (-54C>T) located in the 5`-untranslated region in the NIS sequence. Functional studies in vitro demonstrated that the mutation was associated with a substantial decrease in iodide uptake when transfected into Cos-7 cells. The mutation severely impaired NIS protein expression, although NIS mRNA levels remained similar to those in cells transfected with wild-type NIS, suggesting a translational deficiency elicited by the mutation. Polysome profile analysis demonstrated reduced levels of polyribosomes-associated mutant NIS mRNA, consistent with reduced translation efficiency. Conclusions: We described a novel mutation in the 5`-untranslated region of the NIS gene in a newborn with congenital hypothyroidism bearing a clinical ITD phenotype. Functional evaluation of the molecular mechanism responsible for impaired NIS-mediated iodide concentration in thyroid cells indicated that the identified mutation reduces NIS translation efficiency with a subsequent decrease in protein expression and function. (J Clin Endocrinol Metab 96: E1100-E1107, 2011)
Resumo:
Mucopolysaccharidoses (MPS) are rare lysosomal disorders caused by the deficiency of specific lysosomal enzymes responsible for glycosaminoglycan (GAG) degradation. Enzyme Replacement Therapy (ERT) has been shown to reduce accumulation and urinary excretion of GAG, and to improve some of the patients' clinical signs. We studied biochemical and molecular characteristics of nine MPS patients (two MPS I, four MPS II and three MPS VI) undergoing ERT in northern Brazil. The responsiveness of ERT was evaluated through urinary GAG excretion measurements. Patients were screened for eight common MPS mutations, using PCR, restriction enzyme tests and direct sequencing. Two MPS I patients had the previously reported mutation p.P533R. In the MPS II patients, mutation analysis identified the mutation p.R468W, and in the MPS VI patients, polymorphisms p.V358M and p.V376M were also found. After 48 weeks of ERT, biochemical analysis showed a significantly decreased total urinary GAG excretion in patients with MPS I (p < 0.01) and MPS VI (p < 0.01). Our findings demonstrate the effect of ERT on urinary GAG excretion and suggest the adoption of a screening strategy for genotyping MPS patients living far from the main reference centers.
Resumo:
Mutationen, die zu einer reduzierten Aktivität der Tyrosinkinase c-Kit führen, können zum Verlust von Mastzellen führen, weshalb entsprechende Mausstämme intensiv zur Erforschung von Mastzellfunktionen verwendet werden. C-Kit ist der Rezeptor für den in der Hämatopoese essentiellen Stammzellfaktor (SCF) und die vorliegende Arbeit hatte daher das Ziel, mögliche weitere Auswirkungen der Mutation KitW-sh auf die Hämatopoese in Mäusen zu untersuchen. Es zeigte sich, dass die KitW-sh-Mutation zu einer ausgeprägten extramedullären Hämatopoese in der Milz führt. Dies ist durch das vermehrte Vorkommen von hämatopoetischen Stammzellen und Vorläufern der myeloiden Zellreihe charakterisiert, die alle eine reduzierte Expression von c-Kit aufweisen. Detailiert untersucht wurde eine massiv expandierte Zellpopulation mit dem Phänotyp neutrophiler Granulozyten in den Milzen naiver KitW-sh-Mäuse. Es handelt sich hierbei jedoch um Zellen mit immunsuppressiven Eigenschaften, die in Wildtypmäusen typischerweise während der Entwicklung von Tumoren expandieren und als "myeloid-derived suppressor cells" (MDSC) angesprochen werden, eine phänotypisch und funktionell heterogene Zellgruppe. Die entsprechenden Zellen aus naiven KitW sh-Mäusen wurden als granulozytär-(G)-MDSC-ähnlichen Zellen bezeichnet, da sie in der Lage sind, in vitro die Proliferation von T-Zellen durch die Produktion reaktiver Sauerstoffspezies zu hemmen und nach Transfer in tumortragende Wildtypmäuse das Tumorwachstum zu begünstigen. Diese Ergebnisse stehen im Einklang mit unserer Beobachtung, dass der Transfer einer Karzinom-Zelllinie in KitW-sh-Mäusen zur Bildung größerer Tumore führt als in entsprechenden Wildtyp-Kontrolltieren, unabhängig von der Abwesenheit von Mastzellen. Die Ergebnisse der vorliegenden Arbeit zeigen einen starken Einfluss der KitW-sh-Mutation nicht nur auf die Entwicklung von Mastzellen, sondern auch auf die extramedulläre Myelopoese. Die Expansion G-MDSC-ähnlicher Zellen mit potentiell immunsuppressiven Eigenschaften kann die Verwendung von KitW-sh-Mäusen für die gezielte Untersuchung Mastzell-spezifischer Phänomene einschränken.
Resumo:
Hereditary thrombotic thrombocytopenic purpura (TTP) is a rare disorder characterized by occlusive microvascular thrombosis, consumptive thrombocytopenia, and microangiopathic hemolytic anemia. Homozygous or compound heterozygous mutations in the ADAMTS13 gene result in a congenital severe ADAMTS13 deficiency and subsequent accumulation of ultra-large von Willebrand factor multimers, which tend to form platelet thrombi in the microcirculation. We report a first case of congenital TTP on the African continent with a new, homozygous mutation in the metalloprotease domain of ADAMTS13. An initially oligo-symptomatic presentation was followed by acute exacerbation with ischemic stroke and acute renal failure highlighting the severity of this syndrome.
Resumo:
Carbohydrate-deficient glycoprotein syndrome (CDGS) represents a class of genetic diseases characterized by abnormal N-linked glycosylation. CDGS patients show a large number of glycoprotein abnormalities resulting in dysmorphy, encephalopathy, and other organ disorders. The majority of CDGSs described to date are related to an impaired biosynthesis of dolichyl pyrophosphate-linked Glc3Man9GlcNAc2 in the endoplasmic reticulum. Recently, we identified in four related patients a novel type of CDGS characterized by an accumulation of dolichyl pyrophosphate-linked Man9GlcNAc2. Elaborating on the analogy of this finding with the phenotype of alg5 and alg6 Saccharomyces cerevisiae strains, we have cloned and analyzed the human orthologs to the ALG5 dolichyl phosphate glucosyltransferase and ALG6 dolichyl pyrophosphate Man9GlcNAc2 alpha1,3-glucosyltransferase in four novel CDGS patients. Although ALG5 was not altered in the patients, a C-->T transition was detected in ALG6 cDNA of all four CDGS patients. The mutation cosegregated with the disease in a Mendelian recessive manner. Expression of the human ALG5 and ALG6 cDNA could partially complement the respective S. cerevisiae alg5 and alg6 deficiency. By contrast, the mutant ALG6 cDNA of CDGS patients failed to revert the hypoglycosylation observed in alg6 yeasts, thereby proving a functional relationship between the alanine to valine substitution introduced by the C-->T transition and the CDGS phenotype. The mutation in the ALG6 alpha1,3-glucosyltransferase gene defines an additional type of CDGS, which we propose to refer to as CDGS type-Ic.
Resumo:
Singlet oxygen is a prominent form of reactive oxygen species in higher plants. It is easily formed from molecular oxygen by triplet–triplet interchange with excited porphyrin species. Evidence has been obtained from studies on the flu mutant of Arabidopsis thaliana of a genetically determined cell death pathway that involves differential changes at the transcriptome level. Here we report on a different cell death pathway that can be deduced from the analysis of oep16 mutants of A. thaliana. Pure lines of four independent OEP16-deficient mutants with different cell death properties were isolated. Two of the mutants overproduced free protochlorophyllide (Pchlide) in the dark because of defects in import of NADPH:Pchlide oxidoreductase A (pPORA) and died after illumination. The other two mutants avoided excess Pchlide accumulation. Using pulse labeling and polysome profiling studies we show that translation is a major site of cell death regulation in flu and oep16 plants. flu plants respond to photooxidative stress triggered by singlet oxygen by reprogramming their translation toward synthesis of key enzymes involved in jasmonic acid synthesis and stress proteins. In contrast, those oep16 mutants that were prone to photooxidative damage were unable to respond in this way. Together, our results show that translation is differentially affected in the flu and oep16 mutants in response to singlet oxygen.
Resumo:
DNA damage generated by oxidant byproducts of cellular metabolism has been proposed as a key factor in cancer and aging. Oxygen free radicals cause predominantly base damage in DNA, and the most frequent mutagenic base lesion is 7,8-dihydro-8-oxoguanine (8-oxoG). This altered base can pair with A as well as C residues, leading to a greatly increased frequency of spontaneous G·C→T·A transversion mutations in repair-deficient bacterial and yeast cells. Eukaryotic cells use a specific DNA glycosylase, the product of the OGG1 gene, to excise 8-oxoG from DNA. To assess the role of the mammalian enzyme in repair of DNA damage and prevention of carcinogenesis, we have generated homozygous ogg1−/− null mice. These animals are viable but accumulate abnormal levels of 8-oxoG in their genomes. Despite this increase in potentially miscoding DNA lesions, OGG1-deficient mice exhibit only a moderately, but significantly, elevated spontaneous mutation rate in nonproliferative tissues, do not develop malignancies, and show no marked pathological changes. Extracts of ogg1 null mouse tissues cannot excise the damaged base, but there is significant slow removal in vivo from proliferating cells. These findings suggest that in the absence of the DNA glycosylase, and in apparent contrast to bacterial and yeast cells, an alternative repair pathway functions to minimize the effects of an increased load of 8-oxoG in the genome and maintain a low endogenous mutation frequency.
Resumo:
Plasma high density lipoprotein (HDL), which protects against atherosclerosis, is thought to remove cholesterol from peripheral tissues and to deliver cholesteryl esters via a selective uptake pathway to the liver (reverse cholesterol transport) and steroidogenic tissues (e.g., adrenal gland for storage and hormone synthesis). Despite its physiologic and pathophysiologic importance, the cellular metabolism of HDL has not been well defined. The class B, type I scavenger receptor (SR-BI) has been proposed to play an important role in HDL metabolism because (i) it is a cell surface HDL receptor which mediates selective cholesterol uptake in cultured cells, (ii) its physiologically regulated expression is most abundant in the liver and steroidogenic tissues, and (iii) hepatic overexpression dramatically lowers plasma HDL. To test directly the normal role of SR-BI in HDL metabolism, we generated mice with a targeted null mutation in the SR-BI gene. In heterozygous and homozygous mutants relative to wild-type controls, plasma cholesterol concentrations were increased by ≈31% and 125%, respectively, because of the formation of large, apolipoprotein A-I (apoA-I)-containing particles, and adrenal gland cholesterol content decreased by 42% and 72%, respectively. The plasma concentration of apoA-I, the major protein in HDL, was unchanged in the mutants. This, in conjunction with the increased lipoprotein size, suggests that the increased plasma cholesterol in the mutants was due to decreased selective cholesterol uptake. These results provide strong support for the proposal that in mice the gene encoding SR-BI plays a key role in determining the levels of plasma lipoprotein cholesterol (primarily HDL) and the accumulation of cholesterol stores in the adrenal gland. If it has a similar role in controlling plasma HDL in humans, SR-BI may influence the development and progression of atherosclerosis and may be an attractive candidate for therapeutic intervention in this disease.
Resumo:
The oocyte nuclear antigen of the monoclonal antibody 32-5B6 of Xenopus laevis is subject to regulated nuclear translocation during embryogenesis. It is distributed in the cytoplasm during oocyte maturation, where it remains during cleavage and blastula stages, before it gradually reaccumulates in the nuclei during gastrulation. We have now identified this antigen to be the enzyme S-adenosylhomocysteine hydrolase (SAHH). SAHH is the only enzyme that cleaves S-adenosylhomocysteine, a reaction product and an inhibitor of all S-adenosylmethionine-dependent methylation reactions. We have compared the spatial and temporal patterns of nuclear localization of SAHH and of nuclear methyltransferase activities during embryogenesis and in tissue culture cells. Nuclear localization of Xenopus SAHH did not temporally correlate with DNA methylation. However, we found that SAHH nuclear localization coincides with high rates of mRNA synthesis, a subpopulation colocalizes with RNA polymerase II, and inhibitors of SAHH reduce both methylation and synthesis of poly(A)+ RNA. We therefore propose that accumulation of SAHH in the nucleus may be required for efficient cap methylation in transcriptionally active cells. Mutation analysis revealed that the C terminus and the N terminus are both required for efficient nuclear translocation in tissue culture cells, indicating that more than one interacting domain contributes to nuclear accumulation of Xenopus SAHH.
Resumo:
Wilson disease is an autosomal recessive disorder of hepatic copper metabolism caused by mutations in a gene encoding a copper-transporting P-type ATPase. To elucidate the function of the Wilson protein, wild-type and mutant Wilson cDNAs were expressed in a Menkes copper transporter-deficient mottled fibroblast cell line defective in copper export. Expression of the wild-type cDNA demonstrated trans-Golgi network localization and copper-dependent trafficking of the Wilson protein identical to previous observations for the endogenously expressed protein in hepatocytes. Furthermore, expression of the Wilson cDNA rescued the mottled phenotype as evidenced by a reduction in copper accumulation and restoration of cell viability. In contrast, expression of an H1069Q mutant Wilson cDNA did not rescue the mottled phenotype, and immunofluorescence studies showed that this mutant Wilson protein was localized in the endoplasmic reticulum. Consistent with these findings, pulse–chase analysis demonstrated a 5-fold decrease in the half-life of the H1069Q mutant as compared with the wild-type protein. Maintenance of these transfected cell lines at 28°C resulted in localization of the H1069Q protein in the trans-Golgi network, suggesting that a temperature-sensitive defect in protein folding followed by degradation constitutes the molecular basis of Wilson disease in patients harboring the H1069Q mutation. Taken together, these studies describe a tractable expression system for elucidating the function and localization of the copper-transporting ATPases in mammalian cells and provide compelling evidence that the Wilson protein can functionally substitute for the Menkes protein, supporting the concept that these proteins use common biochemical mechanisms to effect cellular copper homeostasis.
p53 Accumulation, defective cell proliferation, and early embryonic lethality in mice lacking tsg101
Resumo:
Functional inactivation of the tumor susceptibility gene tsg101 in NIH 3T3 fibroblasts results in cellular transformation and the ability to form metastatic tumors in nude mice. The N-terminal region of tsg101 protein is structurally similar to the catalytic domain of ubiquitin-conjugating enzymes, suggesting a potential role of tsg101 in ubiquitin-mediated protein degradation. The C-terminal domain of TSG101 can function as a repressor of transcription. To investigate the physiological function of tsg101, we generated a null mutation of the mouse gene by gene targeting. Homozygous tsg101−/− embryos fail to develop past day 6.5 of embryogenesis (E6.5), are reduced in size, and do not form mesoderm. Mutant embryos show a decrease in cellular proliferation in vivo and in vitro but no increase in apoptosis. Although levels of p53 transcripts were not affected in tsg101−/− embryos, p53 protein accumulated dramatically, implying altered posttranscriptional control of p53. In addition, transcription of the p53 effector, cyclin-dependent kinase inhibitor p21WAF-1/CIP-1, was increased 5- to 10-fold, whereas activation of MDM2 transcription secondary to p53 elevation was not observed. Introduction of a p53 null mutation into tsg101−/− embryos rescued the gastrulation defect and prolonged survival until E8.5. These results demonstrate that tsg101 is essential for the proliferative burst before the onset of gastrulation and establish a functional connection between tsg101 and the p53 pathway in vivo.
Resumo:
Hereditary hemochromatosis (HH) is a common disorder of iron metabolism caused by mutation in HFE, a gene encoding an MHC class I-like protein. Clinical studies demonstrate that the severity of iron loading is highly variable among individuals with identical HFE genotypes. To determine whether genetic factors other than Hfe genotype influence the severity of iron loading in the murine model of HH, we bred the disrupted murine Hfe allele onto three different genetically defined mouse strains (AKR, C57BL/6, and C3H), which differ in basal iron status and sensitivity to dietary iron loading. Serum transferrin saturations (percent saturation of serum transferrin with iron), hepatic and splenic iron concentrations, and hepatocellular iron distribution patterns were compared for wild-type (Hfe +/+), heterozygote (Hfe +/−), and knockout (Hfe −/−) mice from each strain. Although the Hfe −/− mice from all three strains demonstrated increased transferrin saturations and liver iron concentrations compared with Hfe +/+ mice, strain differences in severity of iron accumulation were striking. Targeted disruption of the Hfe gene led to hepatic iron levels in Hfe −/− AKR mice that were 2.5 or 3.6 times higher than those of Hfe −/− C3H or Hfe −/− C57BL/6 mice, respectively. The Hfe −/− mice also demonstrated strain-dependent differences in transferrin saturation, with the highest values in AKR mice and the lowest values in C3H mice. These observations demonstrate that heritable factors markedly influence iron homeostasis in response to Hfe disruption. Analysis of mice from crosses between C57BL/6 and AKR mice should allow the mapping and subsequent identification of genes modifying the severity of iron loading in this murine model of HH.
Resumo:
Active gibberellins (GAs) are endogenous factors that regulate plant growth and development in a dose-dependent fashion. Mutant plants that are GA deficient, or exhibit reduced GA responses, display a characteristic dwarf phenotype. Extragenic suppressor analysis has resulted in the isolation of Arabidopsis mutations, which partially suppress the dwarf phenotype conferred by GA deficiency and reduced GA-response mutations. Here we describe detailed studies of the effects of two of these suppressors, spy-7 and gar2–1, on several different GA-responsive growth processes (seed germination, vegetative growth, stem elongation, chlorophyll accumulation, and flowering) and on the in planta amounts of active and inactive GA species. The results of these experiments show that spy-7 and gar2–1 affect the GA dose-response relationship for a wide range of GA responses and suggest that all GA-regulated processes are controlled through a negatively acting GA-signaling pathway.