808 resultados para multivariate hidden Markov model
Resumo:
Quality of care is an important aspect of healthcare monitoring, which is used to ensure that the healthcare system is delivering care of the highest standard. With populations growing older there is an increased urgency in making sure that the healthcare delivered is of the highest standard. Healthcare providers are under increased pressure to ensure that this is the case with public and government demand expecting a healthcare system of the highest quality. Modelling quality of care is difficult to measure due to the many ways of defining it. This paper introduces a potential model which could be used to take quality of care into account when modelling length of stay. The Coxian phase-type distribution is used to model length of stay and the associated quality of care incorporated into the Coxian using a Hidden Markov model. Covariates are also introduced to determine their impact on the hidden level to find out what potentially can affect quality of care. This model is applied to geriatic patient data from the Lombardy region of Italy. The results obtained highlighted that bed numbers and the type of hospital (public or private) can have an effect on the quality of care delivered.
Resumo:
In this paper, a novel and effective lip-based biometric identification approach with the Discrete Hidden Markov Model Kernel (DHMMK) is developed. Lips are described by shape features (both geometrical and sequential) on two different grid layouts: rectangular and polar. These features are then specifically modeled by a DHMMK, and learnt by a support vector machine classifier. Our experiments are carried out in a ten-fold cross validation fashion on three different datasets, GPDS-ULPGC Face Dataset, PIE Face Dataset and RaFD Face Dataset. Results show that our approach has achieved an average classification accuracy of 99.8%, 97.13%, and 98.10%, using only two training images per class, on these three datasets, respectively. Our comparative studies further show that the DHMMK achieved a 53% improvement against the baseline HMM approach. The comparative ROC curves also confirm the efficacy of the proposed lip contour based biometrics learned by DHMMK. We also show that the performance of linear and RBF SVM is comparable under the frame work of DHMMK.
Resumo:
The detection of physiological signals from the motor system (electromyographic signals) is being utilized in the practice clinic to guide the therapist in a more precise and accurate diagnosis of motor disorders. In this context, the process of decomposition of EMG (electromyographic) signals that includes the identification and classification of MUAP (Motor Unit Action Potential) of a EMG signal, is very important to help the therapist in the evaluation of motor disorders. The EMG decomposition is a complex task due to EMG features depend on the electrode type (needle or surface), its placement related to the muscle, the contraction level and the health of the Neuromuscular System. To date, the majority of researches on EMG decomposition utilize EMG signals acquired by needle electrodes, due to their advantages in processing this type of signal. However, relatively few researches have been conducted using surface EMG signals. Thus, this article aims to contribute to the clinical practice by presenting a technique that permit the decomposition of surface EMG signal via the use of Hidden Markov Models. This process is supported by the use of differential evolution and spectral clustering techniques. The developed system presented coherent results in: (1) identification of the number of Motor Units actives in the EMG signal; (2) presentation of the morphological patterns of MUAPs in the EMG signal; (3) identification of the firing sequence of the Motor Units. The model proposed in this work is an advance in the research area of decomposition of surface EMG signals.
Resumo:
Amplifications and deletions of chromosomal DNA, as well as copy-neutral loss of heterozygosity have been associated with diseases processes. High-throughput single nucleotide polymorphism (SNP) arrays are useful for making genome-wide estimates of copy number and genotype calls. Because neighboring SNPs in high throughput SNP arrays are likely to have dependent copy number and genotype due to the underlying haplotype structure and linkage disequilibrium, hidden Markov models (HMM) may be useful for improving genotype calls and copy number estimates that do not incorporate information from nearby SNPs. We improve previous approaches that utilize a HMM framework for inference in high throughput SNP arrays by integrating copy number, genotype calls, and the corresponding confidence scores when available. Using simulated data, we demonstrate how confidence scores control smoothing in a probabilistic framework. Software for fitting HMMs to SNP array data is available in the R package ICE.
Resumo:
This master thesis deals with determining of innovative projects "viability". "Viability" is the probability of innovative project being implemented. Hidden Markov Models are used for evaluation of this factor. The problem of determining parameters of model, which produce given data sequence with the highest probability, are solving in this research. Data about innovative projects contained in reports of Russian programs "UMNIK", "START" and additional data obtained during study are used as input data for determining of model parameters. The Baum-Welch algorithm which is one implementation of expectation-maximization algorithm is used at this research for calculating model parameters. At the end part of the master thesis mathematical basics for practical implementation are given (in particular mathematical description of the algorithm and implementation methods for Markov models).
Resumo:
Genomic alterations have been linked to the development and progression of cancer. The technique of Comparative Genomic Hybridization (CGH) yields data consisting of fluorescence intensity ratios of test and reference DNA samples. The intensity ratios provide information about the number of copies in DNA. Practical issues such as the contamination of tumor cells in tissue specimens and normalization errors necessitate the use of statistics for learning about the genomic alterations from array-CGH data. As increasing amounts of array CGH data become available, there is a growing need for automated algorithms for characterizing genomic profiles. Specifically, there is a need for algorithms that can identify gains and losses in the number of copies based on statistical considerations, rather than merely detect trends in the data. We adopt a Bayesian approach, relying on the hidden Markov model to account for the inherent dependence in the intensity ratios. Posterior inferences are made about gains and losses in copy number. Localized amplifications (associated with oncogene mutations) and deletions (associated with mutations of tumor suppressors) are identified using posterior probabilities. Global trends such as extended regions of altered copy number are detected. Since the posterior distribution is analytically intractable, we implement a Metropolis-within-Gibbs algorithm for efficient simulation-based inference. Publicly available data on pancreatic adenocarcinoma, glioblastoma multiforme and breast cancer are analyzed, and comparisons are made with some widely-used algorithms to illustrate the reliability and success of the technique.