884 resultados para multi-walled carbon nanotube


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bismuth/multi-walled carbon nanotube (Bi/MWNT) composite modified electrode for determination of cobalt by differential pulse adsorptive cathodic stripping voltammetry is described. The electrode is fabricated by potentiostatic pre-plating bismuth film on an MWNT modified glassy carbon (GC) electrode. The Bi/MWNT composite modified electrode exhibits enhanced sensitivity for cobalt detection as compared with the bare GC, MWNT modified and bismuth film electrodes. Numerous key experimental parameters have been examined for optimum analytical performance of the proposed electrode. With an adsorptive accumulation of the Co(II)-dimethylglyoxime complex at -0.8 V for 200 s, the reduction peak current is proportional to the concentration of cobalt in the range of 4.0x10(-11)-1.0x10(-7) mol/L with a lower detection limit of 8.1x10(-11) mol/L. The proposed method has been applied Successfully to cobalt determination in seawater and lake water samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and properties of melt mixed high-density polyethylene/multi-walled carbon nanotube (HDPE/MWCNT) composites processed by compression molding and blown film extrusion were investigated to assess the influence of processing route on properties. The addition of MWCNTs leads to a more elastic response during deformations that result in a more uniform thick-ness distribution in the blown films. Blown film composites exhibit better mechanical properties due to the enhanced orientation and disentanglement of MWCNTs. At a blow up ratio (BUR) of 3 the breaking strength and elongation in the machine direction of the film with 4 wt % MWCNTs are 239% and 1054% higher than those of compression molded (CM) samples. Resistivity of the composite films increases significantly with increasing BURs due to the destruction of conductive pathways. These pathways can be recovered partially using an appropriate annealing process. At 8 wt % MWCNTs, there is a sufficient density of nanotubes to maintain a robust network even at high BURs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melt-mixed high density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites with 1–10 wt% MWCNTs were prepared by twin screw extrusion and compression moulded into sheet form. The compression moulded nanocomposites exhibit a 112% increase in modulus at a MWCNT loading of 4 wt%, and a low electrical percolation threshold of 1.9 wt%. Subsequently, uniaxial, sequential (seq-) biaxial and simultaneous (sim-) biaxial stretching of the virgin HDPE and nanocomposite sheets was conducted at different strain rates and stretching temperatures to investigate the processability of HDPE with the addition of nanotubes and the influence of deformation on the structure and final properties of nanocomposites. The results show that the processability of HDPE is improved under all the uniaxial and biaxial deformation conditions due to a strengthened strain hardening behaviour with the addition of MWCNTs. Extensional deformation is observed to disentangle nanotube agglomerates and the disentanglement degree is shown to depend on the stretching mode, strain rate and stretching temperatures applied. The disentanglement effectiveness is: uniaxial stretching < sim-biaxial stretching < seq-biaxial stretching, under the same deformation parameters. In sim-biaxial stretching, reducing the strain rate and stretching temperature can lead to more nanotube agglomerate breakup. Enhanced nanotube agglomerate disentanglement exhibits a positive effect on the mechanical properties and a negative effect on the electrical properties of the deformed nanocomposites. The ultimate stress of the composite containing 4 wt% MWCNTs increased by ∼492% after seq-biaxial stretching, while the resistivity increased by ∼1012 Ω cm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development, electrochemical characterization and utilization of a cobalt phthalocyanine (CoPc), modified multi-walled carbon nanotube (MWCNT), and paraffin composite electrode for the quantitative determination of epinephrine (EP) in human urine samples. The electrochemical profile of the proposed composite electrode was analyzed by differential pulse voltammetry (DPV) that showed a shift of the oxidation peak potential of EP at 175 mV to less positive value, compared with a paraffin/graphite composite electrode without CoPc. DPV experiments in PBS at pH 6.0 were performed to determine EP without any previous step of extraction, clean-up, and derivatization, in the range from 1.33 to 5.50 mu mol L(-1), with a detection limit of 15.6 nmol L(-1) (2.86) of EP in electrolyte prepared with purified water. The lifetime of the proposed sensors was at least over 1000 determinations with 1.7 and 3.1 repeatability and reproducibility relative standard deviations, respectively. Human urine samples without any purification step were successfully analyzed under the standard addition method using paraffin/MWCNT/CoPc composite electrode. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is global concern that soil and water were contaminated with organic substances such as BTEX (benzene) (B), toluene (T) and xylene (x) .The presence of excessive amounts of BTEX in aqueous surroundings may have a greatly adverse impact on water quality and thus endanger public health and welfare. Carbon nanotubes (CNT) have aroused widespread attention as a new type of adsorptions due to their outstanding ability for the removal of various inorganic and organic pollutants from large volume of wastewater. Due to variety of adsorbent and their ability to adsorb pollutant, it is possible to reduce expenses and completely omit pollutant. In this CNT is used as a new adsorbent for removal pollutant such as benzene, toluene, and xylene. The result in the area of adsorbing benzene, toluene, and xylene is as follows: the changes of pH don’t affect the capacity of adsorption and the greatest amount of adsorption occurs in pH. The greatest amount of adsorption occurs when using 0.01gr CNT oxidized. Comparing CNT with CNT oxidized in term of adsorption capacity, it is proved that the adsorption capacity of CNT oxidized is much more than CNT. The result of comparing the percentage of adsorption of mentioned elements (B, X, T) is as follows; the amount of adsorption of xylene is more than toluene and toluene is more than benzene. It should be mentioned that in this research the percentage of adsorption to measure is between to 70-80.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tantalum-oxide thin films are shown to catalyse single- and multi-walled carbon nanotube growth by chemical vapour deposition. A low film thickness, the nature of the support material (best results with SiO2) and an atmospheric process gas pressure are of key importance for successful nanotube nucleation. Strong material interactions, such as silicide formation, inhibit nanotube growth. In situ X-ray photoelectron spectroscopy indicates that no catalyst reduction to Ta-metal or Ta-carbide occurs during our nanotube growth conditions and that the catalytically active phase is the Ta-oxide phase. Such a reduction-free oxide catalyst can be technologically advantageous. © 2013 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper represents the effect of nonlocal scale parameter on the wave propagation in multi-walled carbon nanotubes (MWCNTs). Each wall of the MWCNT is modeled as first order shear deformation beams and the van der Waals interactions between the walls are modeled as distributed springs. The studies shows that the scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or group speed tends to zero). The frequency at which this phenomenon occurs is called the ``Escape frequency''. The analysis shows that, for a given N-walled carbon nanotube (CNT). the nonlocal scaling parameter has a significant effect on the shear wave modes of the N - 1 walls. The escape frequencies of the flexural and shear wave modes of the N-walls are inversely proportionl to the nonlocal scaling parameter. It is also shown that the cut-off frequencies are independent of the nonlocal scale parameter. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polypropylene and natural rubber blends with multiwalled carbon nanotube (PP/NR + MWCNT nanocomposites) were prepared by melt mixing. The melt rheological behaviour of neat PP and PP/NR blends filled with different loadings (1, 3, 5, 7 wt%) of MWCNT was studied. The effect of PP/NR blends (with compositions, 80/20,50/50, 20/80 by wt) on the rheological percolation threshold was investigated. It was found that blending PP with NR (80/20 and 50/50 composition) reduced the rheological percolation threshold from 5 wt% to 3 wt% MWCNT. The melt rheological behaviour of the MWCNT filled PP/NR blends was correlated with the morphology observations from high resolution transmission electron microscopic (HRTEM) images. In predicting the thermodynamically favoured location of MWCNT in PP/NR blend, the specific interaction of phospholipids in NR phase with MWCNTs was considered quantitatively. The MWCNTs were selectively localised in the NR phase. The percolation mechanism in MWCNT filled PP/NR blends was discussed and for each blend composition, the percolation mechanism was found to be different. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiwalled carbon nanotubes display dielectric properties similar to those of graphite, which can be calculated using the well known Drude-Lorentz model. However, most computational softwares lack the capacity to directly incorporate this model into the simulations. We present the finite element modeling of optical propagation through periodic arrays of multiwalled carbon nanotubes. The dielectric function of nanotubes was incorporated into the model by using polynomial curve fitting technique. The computational analysis revealed interesting metamaterial filtering effects displayed by the highly dense square lattice arrays of carbon nanotubes, having lattice constants of the order few hundred nanometers. The curve fitting results for the dielectric function can also be used for simulating other interesting optical applications based on nanotube arrays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Establishing fabrication methods of carbon nanotubes (CNTs) is essential to realize many applications expected for CNTs. Catalytic growth of CNTs on substrates by chemical vapor deposition (CVD) is promising for direct fabrication of CNT devices, and catalyst nanoparticles play a crucial role in such growth. We have developed a simple method called "combinatorial masked deposition (CMD)", in which catalyst particles of a given series of sizes and compositions are formed on a single substrate by annealing gradient catalyst layers formed by sputtering through a mask. CMD enables preparation of hundreds of catalysts on a wafer, growth of single-walled CNTs (SWCNTs), and evaluation of SWCNT diameter distributions by automated Raman mapping in a single day. CMD helps determinations of the CVD and catalyst windows realizing millimeter-tall SWCNT forest growth in 10 min, and of growth curves for a series of catalysts in a single measurement when combined with realtime monitoring. A catalyst library prepared using CMD yields various CNTs, ranging from individuals, networks, spikes, and to forests of both SWCNTs and multi-walled CNTs, and thus can be used to efficiently evaluate self-organized CNT field emitters, for example. The CMD method is simple yet effective for research of CNT growth methods. © 2010 The Japan Society of Applied Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution time resolved transmittivity measurements on horizontally aligned free-standing multi-walled carbon nanotubes reveal a different electronic transient behavior from that of graphite. This difference is ascribed to the presence of discrete energy states in the multishell carbon nanotube electronic structure. Probe polarization dependence suggests that the optical transitions involve definite selection rules. The origin of these states is discussed and a rate equation model is proposed to rationalize our findings. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposite fibers based on multi-walled carbon nanotubes (MWCNT) and poly(lactic acid) (PLA) were prepared by solution blow spinning (SBS). Fiber morphology was characterized by scanning electron microscopy (SEM) and optical microscopy (OM). Electrical, thermal, surface and crystalline properties of the spun fibers were evaluated, respectively, by conductivity measurements (4-point probe), thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), contact angle and X-ray diffraction (XRD). OM analysis of the spun mats showed a poor dispersion of MWCNT in the matrix, however dispersion in solution was increased during spinning where droplets of PLA in solution loaded with MWCNT were pulled by the pressure drop at the nozzle, producing PLA fibers filled with MWCNT. Good electrical conductivity and hydrophobicity can be achieved at low carbon nanotube contents. When only 1 wt% MWCNT was added to low-crystalline PLA, surface conductivity of the composites increased from 5 x 10(-8) to 0.46 S/cm. Addition of MWCNT can slightly influence the degree of crystallinity of PLA fibers as studied by XRD and DSC. Thermogravimetric analyses showed that MWCNT loading can decrease the onset degradation temperature of the composites which was attributed to the catalytic effect of metallic residues in MWCNT. Moreover, it was demonstrated that hydrophilicity slightly increased with an increase in MWCNT content. These results show that solution blow spinning can also be used to produce nanocomposite fibers with many potential applications such as in sensors and biosensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of carbon nanotubes conductivity is generating interest in several fields since it may be relevant for a number of applications. The self-organizing properties of liquid crystals may be used to impose alignment on dispersed carbon nanotubes,thus control-ling their conductivity and its anisotropy. This leads to a number of possible applications in photonic and electronic devices such as electrically controlled carbon nanotube switch- es and crossboards. In this work, cells of liquid crystals doped with multi-walled nanotubes have been prepared in different configurations. Their conductivity variations upon switching have been investigated. It turns out that conductivity evolution depends on the initial configuration (either homogeneous, homeotropic or in-plane switching), the cell thickness and the switching record. The control of these manufacturing paramenters allows the modulation of the electrical behavior of carbon nanotubes.