982 resultados para motor unit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anterior knee pain (AKP) is common and has been argued to be related to poor patellofemoral joint control due to impaired coordination of the vasti muscles. However, there are conflicting data. Changes in motor unit firing may provide more definitive evidence. Synchronization of motor unit action potentials (MUAPs) in vastus medialis obliquus (VMO) and vastus lateralis (VL) may contribute to coordination in patellofemoral joint control. We hypothesized that synchronization may be reduced in AKP. Recordings of single MUAPs were made from VMO and multiunit electromyograph (EMG) recordings were made from VL. Averages of VL EMG recordings were triggered from the single MUAPs in VMO. Motor units in VL firing in association with the VMO motor units would appear as a peak in the VL EMG average. Data were compared to previous normative data. The proportion of trials in which a peak was identified in the triggered averages of VL EMG was reduced in people with AKP (38%) compared to controls (90%). Notably, although 80% of subjects had values less than controls, 20% were within normal limits. These results provide new evidence that motor unit synchronization is modified in the presence of pain and provide evidence for motor control dysfunction in AKP. Perspective: This study shows that coordination of motor units between the medial and lateral vasti muscles in people with anterior knee pain is reduced compared to people without knee pain. It confirms that motor control dysfunction is a factor in this condition and has implications for selection of rehabilitation strategies. (c) 2005 by the American Pain Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Accurate neuromuscular control of the patellofemoral joint is important in knee joint mechanics. Strategies to coordinate the vasti muscles, such as motor unit synchronization, may simplify control of patellar tracking. This study investigated motor unit synchronization between vastus medialis (VM) and lateralis (VL). Methods: Electromyographic (EMG) recordings of single motor unit action potentials (MUAPs) were made from VM and single- and multi-unit recordings were made from VL. Synchronization was quantified from peaks in the cross-correlogram generated from single MUAP pairs in VL and VM. The proportion of motor units in VM with synchronized firing in VL was also quantified from peaks in averages of multiunit VL EMG triggered from the VM MUAP. Results: A high degree of synchronization of motor unit firing between VM and VL was identified. Results were similar for cross-correlation (similar to 45% of cases) and triggered averages (similar to 41% of cases). Conclusions: The data suggest that synchronization between VM and VL is higher than expected. Agreement between traditional cross-correlation and triggered averaging methods suggest that this new technique may provide a more clinically viable method to quantify synchronization. Significance: High synchronization between VM and VL may provide a solution to simplify control of the mechanically unstable patellofemoral joint. (c) 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To investigate motor unit synchronization between medial and lateral vasti and whether such synchronization differs in closed and open chain tasks. Design: Electromyographic recordings of single motor unit action potentials were made from the vastus medialis obliquus (VMO) and multiunit recordings from vastus lateralis during isometric contractions at 30 degrees of knee flexion in closed and open chain conditions. Setting: Laboratory. Participants: Five volunteers with no history of knee pain (age, 30 +/- 3.32y). Interventions: Not applicable. Main Outcome Measure: The degree of synchronization between motor unit firing was evaluated by identifying peaks in the electromyographic averages of the vastus lateralis, triggered from motor unit action potentials in the VMO, and the proportion of power in the power spectral density of the triggered average at the firing frequency of the reference motor unit. The proportion of cases in which there was significant power and peaks in the triggered averages was calculated. Results: The proportion of trials with peaks in the triggered averages of the vastus lateralis electromyographic activity was greater than 61.5% in all tasks, and there was a significantly greater proportion of cases where power in the spectrum was greater than 7.5% (P = .01) for the closed chain condition. Conclusions: There was a high proportion of synchronized motor units between the 2 muscles during isometric contractions, with evidence for greater common drive between the VMO and vastus lateralis in closed chain tasks. This has implications for rehabilitation because it suggests that closed chain tasks may generate better coordination between the vasti muscles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sartorius muscle is the longest muscle in the human body. It is strap-like, up to 600 mm in length, and contains five to seven neurovascular compartments, each with a neuromuscular endplate zone. Some of its fibers terminate intrafascicularly, whereas others may run the full length of the muscle. To assess the location and timing of activation within motor units of this long muscle, we recorded electromyographic potentials from multiple intramuscular electrodes along sartorius muscle during steady voluntary contraction and analyzed their activity with spike-triggered averaging from a needle electrode inserted near the proximal end of the muscle. Approximately 30% of sartorius motor units included muscle fibers that ran the full length of the muscle, conducting action potentials at 3.9 +/- 0.1 m/s. Most motor units were innervated within a single muscle endplate zone that was not necessarily near the midpoint of the fiber. As a consequence, action potentials reached the distal end of a unit as late as 100 ms after initiation at an endplate zone. Thus, contractile activity is not synchronized along the length of single sartorius fibers. We postulate that lateral transmission of force from fiber to endomysium and a wide distribution of motor unit endplates along the muscle are critical for the efficient transmission of force from sarcomere to tendon and for the prevention of muscle injury caused by overextension of inactive regions of muscle fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavior and stability of motor units (MUs) in response to electrical stimulation of different intensities can be assessed with the stimulus-response curve, which is a graphical representation of the size of the compound muscle action potential (CMAP) in relation to stimulus intensity. To examine MU characteristics across the whole stimulus range, the variability of CMAP responses to electrical stimulation, and the differences that occur between normal and disease states, the curve was studied in 11 normal subjects and 16 subjects with amyotrophic lateral sclerosis (ALS). In normal subjects, the curve showed a gradual increase in CMAP size with increasing stimulus intensity, although one or two discrete steps were sometimes observed in the upper half of the curve, indicating the activation of large MUs at higher intensities. In ALS subjects, large discrete steps, due to loss of MUs and collateral sprouting, were frequently present. Variability of the CMAP responses was greater than baseline variability, indicating variability of MU responses, and at certain levels this variability was up to 100 mu Vms. The stimulus-response curve shows differences between normal and ALS subjects and provides information on MU activation and variability throughout the curve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activity of the vasti has been argued to vary through knee range of movement due to changes in passive support of the patellofemoral joint and the relative contribution of these muscles to knee extension. Efficient function of the knee is dependent on optimal control of the patellofemoral joint, largely through coordinated activity of the medial and lateral quadriceps. Motor unit synchronization may provide a mechanism to coordinate the activity of vastus medialis (VMO) and vastus lateralis (VL), and may be more critical in positions of reduced passive support for the patellofemoral joint (i.e., full extension). Therefore, the aim of this study was to determine whether the degree of motor unit synchronization between the vasti muscles is dependent on joint angle. Electromyographic (EMG) recordings of single motor unit action potentials (MUAPs) were made from VMO and multiunit recordings from VL during isometric contractions of the quadriceps at 0 degrees, 30 degrees, and 60 degrees of knee flexion. The degree of synchronization between motor unit firing was evaluated by identification of peaks in the rectified EMG averages of VL, triggered from MUA-Ps in VMO. The proportion of cases in which there was a significant peak in the triggered averages was calculated. There was no significant difference in the degree of synchronization between the vasti at different knee angles (p = 0.57). These data suggest that this basic coordinative mechanism between the vasti muscles is controlled consistently throughout knee range of motion, and is not augmented at specific angles where the requirement for dynamic control of stability is increased. (D 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All muscle contractions are dependent on the functioning of motor units. In diseases such as amyotrophic lateral sclerosis (ALS), progressive loss of motor units leads to gradual paralysis. A major difficulty in the search for a treatment for these diseases has been the lack of a reliable measure of disease progression. One possible measure would be an estimate of the number of surviving motor units. Despite over 30 years of motor unit number estimation (MUNE), all proposed methods have been met with practical and theoretical objections. Our aim is to develop a method of MUNE that overcomes these objections. We record the compound muscle action potential (CMAP) from a selected muscle in response to a graded electrical stimulation applied to the nerve. As the stimulus increases, the threshold of each motor unit is exceeded, and the size of the CMAP increases until a maximum response is obtained. However, the threshold potential required to excite an axon is not a precise value but fluctuates over a small range leading to probabilistic activation of motor units in response to a given stimulus. When the threshold ranges of motor units overlap, there may be alternation where the number of motor units that fire in response to the stimulus is variable. This means that increments in the value of the CMAP correspond to the firing of different combinations of motor units. At a fixed stimulus, variability in the CMAP, measured as variance, can be used to conduct MUNE using the "statistical" or the "Poisson" method. However, this method relies on the assumptions that the numbers of motor units that are firing probabilistically have the Poisson distribution and that all single motor unit action potentials (MUAP) have a fixed and identical size. These assumptions are not necessarily correct. We propose to develop a Bayesian statistical methodology to analyze electrophysiological data to provide an estimate of motor unit numbers. Our method of MUNE incorporates the variability of the threshold, the variability between and within single MUAPs, and baseline variability. Our model not only gives the most probable number of motor units but also provides information about both the population of units and individual units. We use Markov chain Monte Carlo to obtain information about the characteristics of individual motor units and about the population of motor units and the Bayesian information criterion for MUNE. We test our method of MUNE on three subjects. Our method provides a reproducible estimate for a patient with stable but severe ALS. In a serial study, we demonstrate a decline in the number of motor unit numbers with a patient with rapidly advancing disease. Finally, with our last patient, we show that our method has the capacity to estimate a larger number of motor units.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives To evaluate differences among patients with different clinical features of ALS, we used our Bayesian method of motor unit number estimation (MUNE). Methods We performed serial MUNE studies on 42 subjects who fulfilled the diagnostic criteria for ALS during the course of their illness. Subjects were classified into three subgroups according to whether they had typical ALS (with upper and lower motor neurone signs) or had predominantly upper motor neurone weakness with only minor LMN signs, or predominantly lower motor neurone weakness with only minor UMN signs. In all subjects we calculated the half life of MUs, defined as the expected time for the number of MUs to halve, in one or more of the abductor digiti minimi (ADM), abductor pollicis brevis (APB) and extensor digitorum brevis (EDB) muscles. Results The mean half life of MUs was less in subjects who had typical ALS with both upper and lower motor neurone signs than in those with predominantly upper motor neurone weakness or predominantly lower motor neurone weakness. In 18 subjects we analysed the estimated size of the MUs and demonstrated the appearance of large MUs in subjects with upper or lower motor neurone predominant weakness. We found that the appearance of large MUs was correlated with the half life of MUs. Conclusions Patients with different clinical features of ALS have different rates of loss and different sizes of MUs. Significance: These findings could indicate differences in disease pathogenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study was to analyze central motor output changes in relation to contraction force during motor fatigue. The triple stimulation technique (TST, Magistris et al. in Brain 121(Pt 3):437-450, 1998) was used to quantify a central conduction index (CCI = amplitude ratio of central conduction response and peripheral nerve response, obtained simultaneously by the TST). The CCI removes effects of peripheral fatigue from the quantification. It allows a quantification of the percentage of the entire target muscle motor unit pool driven to discharge by a transcranial magnetic stimulus. Subjects (n = 23) performed repetitive maximal voluntary contractions (MVC) of abductor digiti minimi (duration 1 s, frequency 0.5 Hz) during 2 min. TST recordings were obtained every 15 s, using stimulation intensities sufficient to stimulate all cortical motor neurons (MNs) leading to the target muscle, and during voluntary contractions of 20% of the MVC to facilitate the responses. TST was also repetitively recorded during recovery. This basic exercise protocol was modified in a number of experiments to further characterize influences on CCI of motor fatigue (4 min exercise at 50% MVC; delayed fatigue recovery during local hemostasis, "stimulated exercise" by 20 Hz trains of 1 s duration at 0.5 Hz during 2 min). In addition, the cortical silent period was measured during the basic exercise protocol. Force fatigued to approximately 40% of MVC in all experiments and in all subjects. In all subjects, CCI decreased during exercise, but this decrease varied markedly between subjects. On average, CCI reductions preceded force reductions during exercise, and CCI recovery preceded force recovery. Exercising at 50% for 4 min reduced muscle force more markedly than CCI. Hemostasis induced by a cuff delayed muscle force recovery, but not CCI recovery. Stimulated exercise reduced force markedly, but CCI decreased only marginally. Summarized, force reduction and reduction of the CCI related poorly quantitatively and in time, and voluntary drive was particularly critical to reduce the CCI. The fatigue induced reduction of CCI may result from a central inhibitory phenomenon. Voluntary muscle activation is critical for the CCI reduction, suggesting a primarily supraspinal mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Qualquer tarefa motora ativa se dá pela ativação de uma população de unidades motoras. Porém, devido a diversas dificuldades, tanto técnicas quanto éticas, não é possível medir a entrada sináptica dos motoneurônios em humanos. Por essas razões, o uso de modelos computacionais realistas de um núcleo de motoneurônios e as suas respectivas fibras musculares tem um importante papel no estudo do controle humano dos músculos. Entretanto, tais modelos são complexos e uma análise matemática é difícil. Neste texto é apresentada uma abordagem baseada em identificação de sistemas de um modelo realista de um núcleo de unidades motoras, com o objetivo de obter um modelo mais simples capaz de representar a transdução das entradas do núcleo de unidades motoras na força do músculo associado ao núcleo. A identificação de sistemas foi baseada em um algoritmo de mínimos quadrados ortogonal para achar um modelo NARMAX, sendo que a entrada considerada foi a condutância sináptica excitatória dendrítica total dos motoneurônios e a saída foi a força dos músculos produzida pelo núcleo de unidades motoras. O modelo identificado reproduziu o comportamento médio da saída do modelo computacional realista, mesmo para pares de sinal de entrada-saída não usados durante o processo de identificação do modelo, como sinais de força muscular modulados senoidalmente. Funções de resposta em frequência generalizada do núcleo de motoneurônios foram obtidas do modelo NARMAX, e levaram a que se inferisse que oscilações corticais na banda-beta (20 Hz) podem influenciar no controle da geração de força pela medula espinhal, comportamento do núcleo de motoneurônios até então desconhecido.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the "slow" phase of pulmonary oxygen uptake (Vo2) appears to represent energetic processes in contracting muscle, electromyographic evidence tends not to support this. The present study assessed normalized integrated electromyographic (NIEMG) activity in eight muscles that act about the hip, knee and ankle during 8 min of moderate (ventilatory threshold) cycling in six male cyclists. (Vo2) was measured breath by breath during four repeated trials at each of the two intensities. Moderate and very heavy exercise followed a 4-min period of light exercise (50 W). During moderate exercise the slow (Vo2) phase was absent and NIEMG in all muscles did not increase after the first minute of exercise. During very heavy exercise, the slow phase emerged (time delay=58 ± 16 s) and increased progressively (time constant=120 ± 35 s) to an amplitude (0.83 ± 0.16 L/min) that was approximately 21% of the total (Vo2) response. This slow (Vo2) phase coincided with a significant increase in NIEMG in most muscles, and differences in NIEMG activities between the two intensities revealed "slow" muscle activation profiles that differed between muscles in terms of the onset, amplitude and shape of these profiles. This supports the hypothesis that the slow (Vo2) phase is a function of these different slow muscle activation profiles.